1. |
Khan S U, Khan M A, Azhar M, et al. Multimodal medical image fusion towards future research: A review. Journal of King Saud University-Computer and Information Sciences, 2023, 35(8): 101733.
|
2. |
劉云鵬, 李瑾, 王宇, 等. 圖像增強下基于生成對抗網絡和卷積神經網絡的CT與MRI融合方法. 生物醫學工程學雜志, 2023, 40(2): 208-216.
|
3. |
Kalpana V, Vijaya Kishore V, Satyanarayana R V S. MRI and SPECT brain image analysis using image fusion//Proceedings of the Third Mobile Radio Communications and 5G Networks (MRCN), Singapore: Springer Nature Singapore, 2023: 571-586.
|
4. |
羅文斌, 王沛, 張一偉, 等. 基于影像融合診斷前列腺癌的研究進展. 生物醫學工程學雜志, 2024, 41(5): 1078-1084.
|
5. |
Zhang H, Xu H, Xiao Y, et al. Rethinking the image fusion: a fast unified image fusion network based on proportional maintenance of gradient and intensity//Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), New York: AAAI Press, 2020, 34(7): 12797-12804.
|
6. |
Xie X, Cui Y, Ieong C I, et al. Fusionmamba: dynamic feature enhancement for multimodal image fusion with Mamba. arXiv preprint, 2024, arXiv: 2404.09498.
|
7. |
Qiu X, Li M, Zhang L, et al. Guided filter-based multi-focus image fusion through focus region detection. Signal Processing: Image Communication, 2019, 72: 35-46.
|
8. |
Ganasala P, Prasad A D. Medical image fusion based on laws of texture energy measures in stationary wavelet transform domain. International Journal of Imaging Systems and Technology, 2020, 30(3): 544-557.
|
9. |
Ma J, Yu W, Liang P, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion. Information Fusion, 2019, 48: 11-26.
|
10. |
Li J, Li B, Jiang Y, et al. MSAt-GAN: a generative adversarial network based on multi-scale and deep attention mechanism for infrared and visible light image fusion. Complex & Intelligent Systems, 2022, 8(6): 4753-4781.
|
11. |
Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851.
|
12. |
Dhariwal P, Nichol A. Diffusion models beat gans on image synthesis. Advances in Neural Information Processing Systems, 2021, 34: 8780-8794.
|
13. |
Yue J, Fang L, Xia S, et al. Dif-fusion: towards high color fidelity in infrared and visible image fusion with diffusion models. IEEE Transactions on Image Processing, 2023, 32: 5705-5720.
|
14. |
Zhao Z, Bai H, Zhu Y, et al. DDFM: denoising diffusion model for multi-modality image fusion//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris: IEEE, 2023: 8082-8093.
|
15. |
劉慧, 朱積成, 王欣雨, 等. 面向醫學圖像融合的多尺度特征頻域分解濾波. 軟件學報, 2024, 35(12): 5687-5709.
|
16. |
Tan W, Thit?n W, Xiang P, et al. Multi-modal brain image fusion based on multi-level edge-preserving filtering. Biomedical Signal Processing and Control, 2021, 64: 102280.
|
17. |
Tang W, He F, Liu Y, et al. MATR: multimodal medical image fusion via multiscale adaptive transformer. IEEE Transactions on Image Processing, 2022, 31: 5134-5149.
|
18. |
Xu H, Ma J, Jiang J, et al. U2Fusion: a unified unsupervised image fusion network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518.
|
19. |
Zhang H, Ma J. SDNet: a versatile squeeze-and-decomposition network for real-time image fusion. International Journal of Computer Vision, 2021, 129(10): 2761-2785.
|
20. |
Cheng C, Xu T, Wu X J. MUFusion: a general unsupervised image fusion network based on memory unit. Information Fusion, 2023, 92: 80-92.
|
21. |
Ma J, Tang L, Fan F, et al. SwinFusion: cross-domain long-range learning for general image fusion via Swin Transformer. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1200-1217.
|
22. |
Wang W, Deng L J, Vivone G. A general image fusion framework using multi-task semi-supervised learning. Information Fusion, 2024, 108: 102414.
|
23. |
Wen J, Khan A, Chen A, et al. High-quality fusion and visualization for MR-PET brain tumor images via multi-dimensional features. IEEE Transactions on Image Processing, 2024, 33: 3550-3563.
|
24. |
Roberts J W, Aardt J A V, Ahmed F B. Assessment of image fusion procedures using entropy, image quality, and multispectral classification. Journal of Applied Remote Sensing, 2008, 2(1): 023522.
|
25. |
Qiu D, Hu X, Liang P, et al. A deep progressive infrared and visible image fusion network. Journal of Image and Graphics, 2023, 28(1): 156-165.
|
26. |
Singh S, Singh H, Bueno G, et al. A review of image fusion: methods, applications and performance metrics. Digital Signal Processing, 2023, 137: 104020.
|
27. |
唐霖峰, 張浩, 徐涵, 等. 基于深度學習的圖像融合方法綜述. 中國圖象圖形學報, 2023, 28(1): 3-36.
|
28. |
Zhao W, Wang D, Lu H. Multi-focus image fusion with a natural enhancement via a joint multi-level deeply supervised convolutional neural network. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(4): 1102-1115.
|
29. |
孫彬, 高云翔, 諸葛吳為, 等. 可見光與紅外圖像融合質量評價指標分析. 中國圖象圖形學報, 2023, 28(1): 144-155.
|
30. |
Zhang X, Demiris Y. Visible and infrared image fusion using deep learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10535-10554.
|