1. |
Datta S, Mahfouf M, Zhang Q, et al. Imprecise knowledge based design and development of titanium alloys for prosthetic applications. J Mech Behav Biomed Mater, 2016, 53: 350-365.
|
2. |
Li F, Li J, Xu G, et al. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications. J Mech Behav Biomed Mater, 2015, 46: 104-114.
|
3. |
Chen J, Song C, Deng Z, et al. Functional gradient design of additive manufactured gyroid tantalum porous structures: manufacturing, mechanical behaviors and permeability. J Manuf Process, 2024, 125: 202-216.
|
4. |
Gui X, Zhang B, Song P, et al. 3D printing of biomimetic hierarchical porous architecture scaffold with dual osteoinduction and osteoconduction biofunctions for large size bone defect repair. Applied Materials Today, 2024, 37: 102085.
|
5. |
Huo H, Wen P, Cao L, et al. Design and preparation of biomimetic “hard-soft” functional scaffold with gradient irregular pore structure for bone repair. J Mater Res Technol, 2024, 33: 6363-6373.
|
6. |
雷周激欣. 失重環境下骨重建數值模擬的理論與方法研究. 上海: 上海交通大學, 2015.
|
7. |
Hambli R, Benhamou C L, Jennane R, et al. Combined finite element model of human proximal femur behaviour considering remodeling and fracture. IRBM, 2013, 34(2): 191-195.
|
8. |
閆宇凡. 電刺激對低載荷引發的骨重建影響的數值模擬. 天津: 天津大學, 2022.
|
9. |
原慧. 基于損傷修復的皮質骨重建數值模擬研究. 天津: 天津大學, 2020.
|
10. |
Zhang Y, He S Y, Wang P, et al. Impacts of permeability and effective diffusivity of porous scaffolds on bone ingrowth: In silico and in vivo analyses. Biomater Adv, 2024, 161: 213901.
|
11. |
VandenHeuvel D J, Devlin B L, Buenzli P R, et al. New computational tools and experiments reveal how geometry affects tissue growth in 3D printed scaffolds. Chem Eng J Adv, 2023, 475: 145776.
|
12. |
Raghavendra S, Molinari A, Fontanari V, et al. Tensile and compression properties of variously arranged porous Ti-6Al-4V additively manufactured structures via SLM. Procedia Structural Integrity, 2018, 13: 149-154.
|
13. |
Liang H, Yang Y, Xie D, et al. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. Journal of Materials Science, 2019, 35(7): 1284-1297.
|
14. |
Kelly C N, Wang T, Crowley J, et al. High-strength, porous additively manufactured implants with optimized mechanical osseointegration. Biomaterials, 2021, 279: 121206.
|
15. |
Li W, Wang Y, Yang X, et al. Comparison of bone ingrowth between two porous titanium alloy rods with biogenic lamellar structures and diamond crystal lattice on femoral condyles in rabbits. Biochemical and Biophysical Research Communications, 2023, 641: 155-161.
|
16. |
Bai F, Wang Z, Lu J, et al. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Tissue Engineering Part A, 2010, 16(12): 3791-3803.
|
17. |
Kuboki Y, Jin Q, Takita H, et al. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am, 2001, 83(1): S105-S115.
|
18. |
Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl, 2016, 59: 690-701.
|
19. |
Wang C, Xu D, Lin L, et al. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Materials Science and Engineering: C, 2021, 131: 112499.
|
20. |
Qu C, Yuan H. Numerical simulation of bone remodeling coupling the damage repair process in human proximal femur. Computer Modeling in Engineering & Sciences, 2020, 125(2): 829-847.
|
21. |
Frost H M. Bone “mass” and the “mechanostat”: a proposal. Anat Rec, 1987, 219(1): 1-9.
|
22. |
Weinans H, Huiskes R, Grootenboer H J. The behavior of adaptive bone-remodeling simulation models. J Biomech, 1992, 25(12): 1425-1441.
|
23. |
朱興華, 宮赫, 白雪飛, 等. 彈性模量與表觀密度的分段函數關系用于股骨近端的結構模擬. 中國生物醫學工程學報, 2003, 4(3): 250-257.
|
24. |
Abd-Elaziem W, Darwish M A, Hamada A, et al. Titanium-based alloys and composites for orthopedic implants applications: a comprehensive review. Materials & Design, 2024: 112850.
|
25. |
Jacobs C R. Numerical simulation of bone adaptation to mechanical loading. Stanford: Stanford University, 1994.
|
26. |
Munyensanga P, El Mabrouk K. Elemental and experimental analysis of modified stent's structure under uniaxial compression load. J Mech Behav Biomed Mater, 2023, 143: 105903.
|
27. |
Lin X, Zhang R, Lu W, et al. Effect of additive manufactured gyroid porous structure of hybrid gradients on mechanical and failure properties. Additive Manufacturing Frontiers, 2024, 3(3): 200152.
|
28. |
Guo W, Yang Y, Liu C, et al. 3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties. J Mech Behav Biomed Mater, 2023, 142: 105848.
|
29. |
Yang W, Han Q, Chen H, et al. Additive manufactured trabecular-like Ti-6Al-4V scaffolds for promoting bone regeneration. Journal of Materials Science & Technology, 2024, 188: 116-130.
|
30. |
Liang H, Yang Y, Xie D, et al. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. Journal of Materials Science & Technology, 2019, 35(7): 1284-1297.
|
31. |
Shah F A, Snis A, Matic A, et al. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomaterialia, 2016, 30: 357-367.
|
32. |
Wu S H, Li Y, Zhang Y Q, et al. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artificial Organs, 2013, 37(12): 191-201.
|
33. |
Li J P, Habibovic P, van den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 2007, 28(18): 2810-2820.
|
34. |
Tan X P, Tan Y J, Chow C S L, et al. Metallic powder-bed based 3D printing of cellular scaffoldsfor orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C Mater Biol Appl, 2017, 76: 1328-1343.
|
35. |
Li Y, Xiong J, Hodgson P D, et al. Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering. J Alloys Compd, 2010, 494(1-2): 323-329.
|
36. |
Chang B, Song W, Han T, et al. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta biomaterialia, 2016, 33: 311-321.
|
37. |
Carter D R, Beaupre G S. Skeletal function and form. mechanobiology of skeletal development, aging, and regeneration. Cambridge: Cambridge University Press, 2002.
|
38. |
Garcia J M, Martinez M A, Doblaré M. An anisotropic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Comput Methods Biomech Biomed Engin, 2001, 4(4): 355-377.
|