1. |
Athal K K, Willinger L, Manning W, et al. A constrained-condylar fixed-bearing total knee arthroplasty is stabilised by the medial soft tissues. Knee Surg Sports Traumatol Arthrosc, 2021, 29(2): 659-667.
|
2. |
Villa J M, Mashni S J, Bains S S, et al. The fate of highly porous titanium tibial cones in revision totalknee arthroplasty: a multicenter 5-year minimum follow-up study. J Arthroplasty, 2025: S0883.
|
3. |
梁浩東, 潘建科, 謝輝, 等. 全膝關節置換過程中骨缺損的處理策略. 中國組織工程研究, 2018, 22(15): 2414-2420.
|
4. |
束志勇, 查振剛, 李劼若, 等. 全膝關節翻修術中骨缺損的治療進展. 中國矯形外科雜志, 2008, 16(24): 1879-1882.
|
5. |
Zhang J, Liu Y, Han Q, et al. Biomechanical comparison between porous Ti6Al4V block and tumor prosthesis UHMWPE block for the treatment of distal femur bone defects. Front Bioeng Biotechnol, 2022, 10: 939371.
|
6. |
Shafagih R, Rodriguez O, Schemitsch E H, et al. A review of materials for managing bone loss in revision total knee arthroplasty. Mater Sci Eng C, 2019, 104: 109941.
|
7. |
Innocenti B, Fekete G, Pianigiani S. Biomechanical analysis of augments in revision total knee arthroplasty. J Biomech Eng, 2018, 140(11): 111006.
|
8. |
Liu Y, Chen B, Wang C, et al. Design of porous metal block augmentation to treat tibial bone defects in total knee arthroplasty based on topology optimization. Front Bioeng Biotechnol, 2021, 9: 765438.
|
9. |
Rahimizadeh A, Nourmohammadi Z, Arabnejad D S, et al. Porous architected biomaterial for a tibial-knee implant with minimum bone resorption and bone-implant interface micromotion. J Mech Behav Biomed Mater, 2018, 78: 465-479.
|
10. |
Yoon J R, Cheong J Y, Im J T, et al. Rotating hinge knee versus constrained condylar knee in revision total knee arthroplasty: a meta-analysis. PLoS ONE, 2019, 14(3): e0214279.
|
11. |
Sopher R S, Amis A A, Calder J D, et al. Total ankle replacement design and positioning affect implant-bone micromotion and bone strains. Med Eng Phys, 2017, 42: 80-90.
|
12. |
Annur D, Kartika I, Sudiro T, et al. Microstructure, mechanical properties, and in vitro studies of porous titanium obtained by spark plasma sintering. Trans Indian Inst Met, 2022, 75(12): 3067-3076.
|
13. |
Liang D, Zhong C, Jiang F, et al. Fabrication of porous tantalum with low elastic modulus and tunable pore size for bone repair. ACS Biomaterials Science & Engineering, 2023, 9(3): 1720-1728.
|
14. |
趙志慶, 王冀川, 燕太強, 等. 3D打印踝關節融合假體重建脛骨遠端腫瘤切除后骨缺損的有限元分析. 中國骨與關節雜志, 2023, 12(12): 883-888.
|
15. |
陳彥飛, 魯超, 趙勇, 等. 基于CT影像動態膝關節有限元模型的構建及仿真力學分析. 中國骨傷, 2020, 33(5): 479-484.
|
16. |
胡海波, 劉會群, 王杰恩, 等. 生物醫用多孔鈦及鈦合金的研究進展. 材料導報, 2012, 26(1): 262-266,270.
|
17. |
Godest A C, Beaugonin M, Haug E, et al. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech, 2002, 35(2): 267-275.
|
18. |
Kelly N, Cawley D T, Shannon F J, et al. An investigation of the inelastic behaviour of trabecular bone during the press-fit implantation of a tibial component in total knee arthroplasty. Med Eng Phys, 2013, 35(11): 1599-1606.
|
19. |
International Organization for Standardization. ISO 14243-3: 2014 Implants for surgery-Wear of total knee-joint prostheses-Part 3: Loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test. Geneva: International Organization for Standardization, 2014.
|
20. |
Greenberg A, Cohen D, Shahabinezhad A, et al. Good short-term survivorship of constrained condylar revision knee implants with medial pivot kinematics: a level IV retrospective study. J Arthroplasty, 2024, 39(8 S1): S275-S279.
|
21. |
Wang X, Malik A, Bartel D L, et al. Load sharing among collateral ligaments, articular surfaces, and the tibial post in constrained condylar knee arthroplasty. J Biomech Eng, 2016, 138(8): 081002.
|
22. |
Chen Z, Han J, Zhang J, et al. Tibial post loading increases the risk of aseptic loosening of posterior-stabilized tibial prosthesis. Proc Inst Mech Eng H, 2024, 238(8-9): 886-896.
|
23. |
趙光輝, 馬建兵, 王建朋. 初次全膝關節置換術中使用短延長桿的生物力學研究. 中華骨與關節外科雜志, 2023, 16(8): 713-720.
|
24. |
Totoribe K, Chosa E, Yamako G, et al. Finite element analysis of the tibial bone graft in cementless total knee arthroplasty. J Orthop Surg Res, 2018, 13(1): 113.
|
25. |
Cameron H U, Pilliar R M, Macnab I. The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res, 1973, 7(4): 301-311.
|
26. |
Engh C A, O'connor D, Jasty M, et al. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res, 1992, 285: 13-29.
|
27. |
El-zayat B F, Heyse T J, Fanciullacci N, et al. Fixation techniques and stem dimensions in hinged total knee arthroplasty: a finite element study. Arch Orthop Trauma Surg, 2016, 136(12): 1741-1752.
|
28. |
Barrack R L, Stanley T, Burt M, et al. The effect of stem design on end-of-stem pain in revision total knee arthroplasty. J Arthroplasty, 2004, 19(7 Suppl 2): 119-124.
|