1. |
Tsang J Y, Wright A, Carr M J, et al. Risk of falls and fractures in individuals with cataract, age-related macular degeneration, or glaucoma. JAMA Ophthalmol, 2024, 142(2): 96-106.
|
2. |
Miotto S, Zemella N, Gusson E, et al. Morphologic criteria of lesion activity in neovascular age-related macular degeneration: a consensus article. Journal of Ocular Pharmacology and Therapeutics, 2018, 34(3): 298-308.
|
3. |
邵毅, 溫佳怡, 令倩. 年齡相關性黃斑變性診斷與治療規范: 2022年英國皇家眼科醫學會指南解讀. 眼科新進展, 2023, 43(2): 85-88.
|
4. |
Bakri S J, Thorne J E, Ho A C, et al. Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: a report by the American Academy of Ophthalmology. Ophthalmology, 2019, 126(1): 55-63.
|
5. |
Deng Y, Qiao L, Du M, et al. Age-related macular degeneration: epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis, 2021, 9(1): 62-79.
|
6. |
Wang J, He Y, Fang W, et al. Unsupervised domain adaptation model for lesion detection in retinal OCT images. Phys Med Biol, 2021, 66: 215006.
|
7. |
Lupidi M, Cerquaglia A, Chhablani J, et al. Optical coherence tomography angiography in age-related macular degeneration: the game changer. Eur J Ophthalmol, 2018, 28(4): 349-357.
|
8. |
Wang J, Li W, Chen Y, et al. Weakly supervised anomaly segmentation in retinal OCT images using an adversarial learning approach. Biomedical Optics Express, 2021, 12(8): 4713-4729.
|
9. |
汪榮貴, 姚旭晨, 楊娟, 等. 基于深度遷移學習的微型細粒度圖像分類. 光電工程, 2019, 46(6): 26-35.
|
10. |
齊永鋒, 呂雪超, 裴曉旭, 等. 基于生成對抗網絡的高光譜圖像分類. 光電子·激光, 2021, 32(12): 1285-1292.
|
11. |
Lee C S, Baughman D M, Lee A Y. Deep learning is effective for the classification of OCT images of normal versus age-related macular degeneration. Ophthalmol Retina, 2017, 1(4): 322-327.
|
12. |
Serener A, Serte S. Dry and wet age-related macular degeneration classification using oct images and deep learning//2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul: IEEE, 2019: 1-4.
|
13. |
Wang W, Xu Z, Yu W, et al. Two-stream CNN with loose pair training for multi-modal AMD categorization//Medical Image Computing and Computer Assisted Intervention–MICCAI 2019, Shenzhen: Springer International Publishing, 2019: 156-164.
|
14. |
Vaghefi E, Hill S, Kersten H M, et al. Multi-modal retinal image analysis via deep learning for the diagnosis of intermediate dry age-related macular degeneration: a feasibility study. Journal of Ophthalmology, 2020, 2020: 7493419.
|
15. |
Xu Z, Wang W, Yang J, et al. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks. British Journal of Ophthalmology, 2021, 105(4): 561-566.
|
16. |
Hwang D K, Hsu C C, Chang K J, et al. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics, 2019, 9(1): 232-245.
|
17. |
E Haihong, Ding J, Yuan L. SAE-wAMD: a self-attention enhanced convolution neural network for fine-grained classification of wet age-related macular degeneration using OCT image//2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Xi’an: IEEE, 2023: 619-627.
|
18. |
Ma Z, Xie Q, Xie P, et al. HCTNet: a hybrid ConvNet-Transformer network for retinal optical coherence tomography image classification. Biosensors, 2022, 12(7): 542.
|
19. |
楊文逸, 陳明惠, 吳玉全, 等. 采用自注意力機制的OCT圖像AMD亞型分類研究. 光學技術, 2024, 50(1): 112-119.
|
20. |
許偉濠, 張伯泉, 劉銀萍. 基于熱力圖和注意力機制的單目6D姿態估計算法. 微電子學與計算機, 2023, 40(7): 45-54.
|
21. |
Shaw P, Uszkoreit J, Vaswani A. Self-attention with relative position representations. arXiv preprint, 2018, arXiv: 1803.02155.
|
22. |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal: IEEE, 2021: 10012-10022.
|
23. |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City: IEEE, 2018: 7132-7141.
|
24. |
Hu J, Shen L, Albanie S, et al. Gather-excite: exploiting feature context in convolutional neural networks//32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal: NIPS, 2018, 31: 1-11.
|
25. |
Park J, Woo S, Lee J Y, et al. BAM: bottleneck attention module. arXiv preprint, 2018, arXiv: 1807.06514.
|
26. |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module//Proceedings of the European Conference on Computer Vision (ECCV), Munich: IEEE, 2018: 3-19.
|
27. |
Zhang H, Yang S, Zhang X. Automatic recognition and classification of microalgae using an inception-v3 convolution neural network model. International Journal of Environmental Science and Technology, 2023, 21(4): 4625-4634.
|
28. |
Anand R, Lakshmi V S, Pandey B K. An enhanced ResNet-50 deep learning model for arrhythmia detection using electrocardiogram biomedical indicators. Evolving Systems, 2023, 15(1): 83-97.
|
29. |
Saluja S ,Trivedi M C ,Sarangdevot S S. Advancing glioma diagnosis: Integrating custom U-Net and VGG-16 for improved grading in MR imaging. Math Biosci Eng, 2024, 21(3): 4328-4350.
|