1. |
Penfield C A, Wing D A. Labor induction techniques: Which is the best? Obstet Gynecol Clin North Am, 2017, 44(4): 567-582.
|
2. |
Panelli D M, Robinson J N, Kaimal A J, et al. Using cervical dilation to predict labor onset: A tool for elective labor induction counseling. Am J Perinatol, 2019, 36: 1485-1491.
|
3. |
Osterman M, Hamilton B, Martin J A, et al. Births: Final data for 2020. Natl Vital Stat Rep, 2021, 70(17): 1-50.
|
4. |
Wang L, Wang G, Cao W, et al. Comparison of the cook vaginal cervical ripening balloon with prostaglandin E2 insert for induction of labor in late pregnancy. Arch Gynecol Obstet, 2020, 302(3): 579-584.
|
5. |
Muglu J, Rather H, Arroyo-Manzano D, et al. Risks of stillbirth and neonatal death with advancing gestation at term: A systematic review and meta-analysis of cohort studies of 15 million pregnancies. PLoS Med, 2019, 16(7): e1002838.
|
6. |
Wu P, Green M, Myers J E. Hypertensive disorders of pregnancy. BMJ, 2023, 381: e071653.
|
7. |
Shehab M, Abualigah L M, Shambour Q Y, et al. Machine learning in medical applications: A review of state-of-the-art methods. Comput Biol Med, 2022, 145: 105458.
|
8. |
D'souza R, Ashraf R, Foroutan F. Prediction models for determining the success of labour induction: A systematic review and critical analysis. Best Pract Res Clin Obstet Gynaecol, 2022, 79: 42-54.
|
9. |
Perelman A, Marty L, Hirschberg C I, et al. Progression of hypertensive disorders of pregnancy during induction of labor at term. Am J Obstet Gynecol, 2022, 226(1): S503.
|
10. |
Hu T, Du S, Li X, et al. Establishment of a model for predicting the outcome of induced labor in full-term pregnancy based on machine learning algorithm. Sci Rep, 2022, 12(1): 19063.
|
11. |
Huang K, Liu Z, Luo J, et al. Random forest model for labor induction in pregnant women with hypertensive disorders using a cervical double balloon. Altern Ther Health Med, 2023, 29(1): 44-51.
|
12. |
Hwang H S, Sohn I S, Kwon H S. Imaging analysis of cervical elastography for prediction of successful induction of labor at term. J Ultrasound Med, 2013, 32(6): 937-946.
|
13. |
Caughey A B, Cahill A G, Guise J-M, et al. Safe prevention of the primary cesarean delivery. Am J Obstet Gynecol, 2014, 210(3): 179-193.
|
14. |
Lu J, Lu J, Cheng Y K Y, et al. The predictive value of cervical shear wave elastography in the outcome of labor induction. Acta Obstet Gynecol Scand, 2019, 99: 59-68.
|
15. |
Altman N, Krzywinski M. The curse(s) of dimensionality. Nat Methods, 2018, 15(6): 399-400.
|
16. |
Yang B, Xu Y, Maxwell A, et al. MICRAT: A novel algorithm for inferring gene regulatory networks using time series gene expression data. BMC Syst Biol, 2018, 12(Suppl 7): 115.
|
17. |
Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets. Science, 2011, 334: 1518-1524.
|
18. |
王玉瀟, 姜威, 劉治, 等. 基于共空間模式算法和支持向量機二重分類的癲癇發病預測. 生物醫學工程學雜志, 2021, 38(1): 39-46.
|
19. |
Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing, 2020, 408: 189-215.
|
20. |
Taud H, Mas J F. Geomatic approaches for modeling land change scenarios. Cham: Springer International Publishing, 2018: 451-455.
|
21. |
劉美君, 吳全玉, 丁勝, 等. 自適應噪聲完備經驗模態分解排列熵結合支持向量機的心音分類方法研究. 生物醫學工程學雜志, 2022, 39(2): 311-319.
|
22. |
Crane J M G. Factors predicting labor induction success: A critical analysis. Clin Obstet Gynecol, 2006, 49: 573-584.
|
23. |
Teixeira C, Lunet N, Rodrigues T, et al. The Bishop Score as a determinant of labour induction success: a systematic review and meta-analysis. Arch Gynecol Obstet, 2012, 286(3): 739-53.
|
24. |
劉千祺, 陳俊雅. 超聲指標預測引產結局的研究進展. 中國臨床醫學影像雜志, 2022, 33(7): 519-522.
|
25. |
Yang Q, Zhou C C, Chen Y, et al. Prediction model for successful induction of labor by cervical strain elastography diagnosed at late-term pregnancy in nulliparous women: A prospective cohort study. BMC Pregnancy Childbirth, 2023, 23(1): 114.
|
26. |
Ellis J A, Brown C M, Barger B, et al. Influence of maternal obesity on labor induction: A systematic review and meta-analysis. J Midwifery Womens Health, 2019, 64(1): 55-67.
|