1. |
Wang G, Wang D, Du C, et al. Seizure prediction using directed transfer function and convolution neural network on intracranial EEG. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(12): 2711-2720.
|
2. |
Sumsky S L, Santaniello S. Decision support system for seizure onset zone localization based on channel ranking and high-frequency EEG activity. IEEE J Biomed Health Inform, 2019, 23(4): 1535-1545.
|
3. |
Mesraoua B, Deleu D, Hassan A H, et al. Dramatic outcomes in epilepsy: depression, suicide, injuries, and mortality. Current Medical Research and Opinion, 2020, 36(9): 1473-1480.
|
4. |
覃小雅, 袁媛, 陳彥, 等. 頭皮腦電圖在迷走神經電刺激治療難治性癲癇研究中的應用. 生物醫學工程學雜志, 2020, 37(4): 699-707.
|
5. |
Chu C J. High density EEG-what do we have to lose?. Clinical Neurophysiology, 2015, 126(3): 433-434.
|
6. |
屈若為, 王召楠, 王石峰, 等. 基于真實頭模型與多偶極子算法的癲癇致癇灶腦電溯源方法研究. 生物醫學工程學雜志, 2023, 40(2): 272-279.
|
7. |
王夏婉. 兒科癲癇患者18F-FDG PET隨訪及腦代謝網絡評估的研究. 杭州: 浙江大學, 2021.
|
8. |
Dong L, Wang P, Bin Y, et al. Local multimodal serial analysis for fusing EEG-fMRI: a new method to study familial cortical myoclonic tremor and epilepsy. IEEE Transactions on Autonomous Mental Development, 2015, 7(4): 311-319.
|
9. |
Zhang Q, Liao Y, Wang X, et al. A deep learning framework for 18F-FDG PET imaging diagnosis in pediatric patients with temporal lobe epilepsy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48(8): 2476-2485.
|
10. |
朱毓華, 陳怡靜, 葛璟潔, 等. 行為變異型額顳葉癡呆患者腦葡萄糖代謝特征研究. 中國臨床神經科學, 2020, 28(3): 259-265.
|
11. |
Morbelli S, Drzezga A, Perneczky R, et al. Resting metabolic connectivity in prodromal Alzheimer’s disease. A European Alzheimer Disease Consortium (EADC) project . Neurobiol Aging, 2012, 33(11): 2533-2550.
|
12. |
黃保強, 李春勝. 基于癲癇網絡動態重構與虛擬切除的致癇區定位研究. 生物醫學工程學雜志, 2022, 39(6): 1165-1172.
|
13. |
賀文頡, 卜海兵, 童莉, 等. 基于腦網絡連接的實時功能磁共振成像神經反饋技術研究進展. 生物醫學工程學雜志, 2017, 34(3): 456-460.
|
14. |
陳雪嬌. 基于FDG-PET大腦代謝網絡及其魯棒性和模塊化特性研究. 蘭州: 蘭州大學, 2017.
|
15. |
潘婷婷. 基于FDG-PET成像的動物腦代謝網絡分析方法及其應用. 鄭州: 鄭州大學, 2022.
|
16. |
Yakushev I, Chételat G, Fischer F U, et al. Metabolic and structural connectivity within the default mode network relates to working memory performance in young healthy adults. Neuroimage, 2013, 79: 184-190.
|
17. |
Deco G, Jirsa V K, McIntosh A R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci, 2011, 12(1): 43-56.
|
18. |
Zhao B, McGonigal A, Hu W, et al. Interictal HFO and FDG-PET correlation predicts surgical outcome following SEEG. Epilepsia, 2023, 64(3): 667-677.
|
19. |
Shan Y, Zhou H C, Shang K, et al. Functional connectivity alterations based on hypometabolic region may predict clinical prognosis of temporal lobe epilepsy: a simultaneous 18F-FDG PET/fMRI study. Biology. 2022, 11(8): 1178.
|
20. |
Pagani M, Giuliani A, ?berg J, et al. Progressive disintegration of brain networking from normal aging to Alzheimer disease: analysis of independent component of 18F-FDG-PET data. J Nucl Med, 2017, 58(7): 1132-1139.
|
21. |
Lagarde S, Boucekine M, McGonigal A, et al. Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy. Eur J Nucl Med Mol Imaging, 2020, 47(13): 3130-3142.
|
22. |
Toussaint P J, Perlbarg V, Bellec P, et al. Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer's disease using conjoint univariate and independent component analyses. Neuroimage, 2012, 63(2): 936-946.
|
23. |
Wang J, Jin C, Zhou J, et al. PET molecular imaging for pathophysiological visualization in Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50(3): 765-783.
|