1. |
Hosanee M, Chan G, Welykholowa K, et al. Cuffless single-site photoplethysmography for blood pressure monitoring. J Clin Med, 2020, 9(3): 723.
|
2. |
Eerikainen L M, Bomoni A G, Dekker L R, et al. Atrial fibrillation monitoring with wrist-worn photoplethysmography-based wearables: state-of-the-art review. Cardiovascular Digital Health Journal, 2020, 1(1): 45-51.
|
3. |
Biswas D, Sim?es-Capela N, Van Hoof C, et al. Heart rate estimation from wrist-worn photoplethysmography: a review. IEEE Sens J, 2019, 19(16): 6560-6570.
|
4. |
李敏. 基于光電容積脈搏波的抗運動心率及血氧提取算法研究. 北京: 北京理工大學, 2016.
|
5. |
Ansari S, Ward K, Najarian K. Epsilon-tube filtering: reduction of high-amplitude motion artifacts from impedance plethysmography signal. IEEE J Biomed Health Inform, 2015, 19(2): 406-417.
|
6. |
Couceiro R, Carvalho P, Paiva R P, et al. Detection of motion artifact patterns in photoplethysmographic signals based on time and period domain analysis. Physiol Meas, 2014, 35(12): 2369-2388.
|
7. |
Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas, 2007, 28(3): R1-39.
|
8. |
Kim B S, Yoo S K. Motion artifact reduction in photoplethysmography using independent component analysis. IEEE Trans Biomed Eng, 2006, 53(3): 566-568.
|
9. |
Wang S, Gao Z, Li G, et al. Adaptive pulse oximeter with dual-wavelength based on wavelet transforms. Opt Express, 2013, 21(20): 23058-23067.
|
10. |
Raghuram M, Madhav K V, Krishna E H, et al. Dual-tree complex wavelet transform for motion artifact reduction of PPG signals//2012 IEEE International Symposium on Medical Measurements and Applications Proceedings, Budapest: IEEE, 2012: 1-4.
|
11. |
Sun X, Yang P, Li Y, et al. Robust heart beat detection from photoplethysmography interlaced with motion artifacts based on empirical mode decomposition//Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong: IEEE, 2012: 775-778.
|
12. |
Roy B, Gupta R. MoDTRAP: Improved heart rate tracking and preprocessing of motion-corrupted photoplethysmo-graphic data for personalized healthcare. Biomed Signal Proces, 2020, 56: 101676-101689.
|
13. |
Relente A R, Sison L G. Characterization and adaptive filtering of motion artifacts in pulse oximetry using accelerometers//24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Houston: IEEE, 2002: 1769-1770.
|
14. |
Chan K W, Zhang Y T. Adaptive reduction of motion artifact from photoplethysmographic recordings using a variable step-size LMS filter//Proceedings of IEEE Sensors, Orlando: IEEE, 2003: 1343-1346.
|
15. |
Ram M R, Madhav K V, Krishna E H, et al. A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter. IEEE Transactions on Instrumentation and Measurement, 2012, 61(5): 1445-1457.
|
16. |
Gibbs P, Asada H H. Reducing motion artifact in wearable bio-sensors using MEMS accelerometers for active noise cancellation//Proceedings of the 2005 American Control Conference, Portland: IEEE, 2005: 1581-1586.
|
17. |
Ram M R, Madhav K V, Krishna E H, et al. On the performance of AS-LMS based adaptive filter for reduction of motion artifacts from PPG signals//IEEE International Instrumentation and Measurement Technology Conference, Hangzhou: IEEE, 2011: 1536-1539.
|
18. |
Reddy K A, Kumar V J. Motion artifact reduction in photoplethysmographic signals using singular value decomposition//IEEE Instrumentation & Measurement Technology Conference, Warsaw: IEEE, 2007: 1-4.
|
19. |
Barnova K, Martinek R, Jaros R, et al. System for adaptive extraction of non-invasive fetal electrocardiogram. Appl Soft Comput, 2021, 113: 107940-107959.
|
20. |
Ouelaa Z, Younes R, Djebala A, et al. Comparative study between objective and subjective methods for identifying the gravity of single and multiple gear defects in case of noisy signals. Appl Acoust, 2022, 185: 108432-108445.
|
21. |
Zhao L, Li Z, Zhang J, et al. An integrated complete ensemble empirical mode decomposition with adaptive noise to optimize LSTM for significant wave height forecasting. J Mar Sci Eng, 2023, 11(2): 435-457.
|
22. |
鐘志賢, 馬李奕, 蔡忠侯, 等. 基于VMD_MPE和FCM聚類的變轉速工況下轉子不平衡故障診斷方法. 振動與沖擊, 2022, 41(14): 290-298.
|
23. |
趙建崗,寧靜, 寧云志, 等. 基于多尺度排列熵和線性局部切空間排列的機械故障診斷特征提取. 振動與沖擊, 2021, 40(13): 136-145.
|
24. |
Arunkumar K R, Bhaskar M. Heart rate estimation from photoplethysmography signal for wearable health monitoring devices. Biomed Signal Proces, 2019, 50: 1-9.
|
25. |
Vazquez A A, Avalos J. Sanchez G, et al. A comparative survey of convex combination of adaptive filters. Journal of the Institution of Electronics and Telecommunication Engineers, 2020, 69(2): 940-950.
|
26. |
黃俊翔. 便攜式動態心電、血氧監護儀研制. 桂林: 桂林電子科技大學, 2022.
|
27. |
石振喬. 基于PPG信號的血氧檢測算法研究. 海口: 海南大學, 2022.
|
28. |
張林. 運動狀態下血氧飽和度檢測算法研究. 重慶: 重慶理工大學, 2021.
|
29. |
Sandie A B, Tejiokem M C, Faye C M, et al. Observed versus estimated actual trend of COVID-19 case numbers in cameroon: a data-driven modeling. Infectious Disease Modelling, 2023, 8(1): 228-239.
|
30. |
毛爍. 面向運動過程的血氧飽和度提取算法研究. 西安: 西安電子科技大學, 2018.
|