| 1. |
Hao Jianye, Liao Ww, Zhang Yu, et al. Toward clinically applicable 3-dimensional tooth segmentation via deep learning. J Dent Res, 2021, 101(3): 304-311.
|
| 2. |
Zhao Yue, Zhang Lingming, Yang Chongshi, et al. 3D Dental model segmentation with graph attentional convolution network. Pattern Recogn Lett, 2021, 152(C): 79-85.
|
| 3. |
Louis B M D, Brosset S, Bianchi J, et al. A 3D surface segmentation framework. Spie Proceedings, 2021, 1159(6): 713-725.
|
| 4. |
Sun Diya, Pei Yuru, Song Guanyin, et al. Tooth segmentation and labeling from digital dental casts// 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020). Iowa City: IEEE, 2020: 669-673.
|
| 5. |
李占利, 孫志浩, 李洪安, 等. 圖卷積網絡下牙齒種子點自動選取. 中國圖象圖形學報, 2020, 25(7): 1481-1489.
|
| 6. |
Wu T H, Lian C F, Lee S, et al. Two-stage mesh deep learning for automated tooth segmentation and landmark localization on 3D intraoral scans. IEEE T Med Imaging, 2022, 41(11): 3158-3166.
|
| 7. |
Xu Xiaojie, Liu Chang, Zheng Youyi. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE T Vis Comput Gr, 2019, 25(7): 2336-2348.
|
| 8. |
Zhao Yue, Zhang Lingming, Liu Yang, et al. Two-stream graph convolutional network for intra-oral scanner image segmentation. IEEE T Med Imaging, 2022, 41(4): 826-835.
|
| 9. |
Zhou Zhengsong, Wan Hongli, Zhang Haoyu, et al. Segmentation of spontaneous intracerebral hemorrhage on ct with a region growing method based on watershed preprocessing. Front Neurol, 2022, 13: 157-172.
|
| 10. |
Jiang Xiaotong. Coarse-to-fine 3d tooth segmentation via intuitive single clicks. Comput Graph-uk, 2022, 102: 601-609.
|
| 11. |
姜曉通, 戴寧, 張長東, 等. 牙齒半自動精確分割算法. 計算機輔助設計與圖形學學報, 2020, 32(5): 820-829.
|
| 12. |
Kim S, Choi S. Automatic tooth segmentation of dental mesh using a transverse plane. IEEE Eng Med Biol Soc, 2018, 2018: 4122-4125.
|
| 13. |
肖兵, 魏昕, 胡偉, 等. 基于特征線分段技術的牙齒分割算法. 計算機應用, 2017, 37(3): 844-848.
|
| 14. |
Lacerda P, Gonzalez J, Rocha N, et al. A parallel method for anatomical structure segmentation based on 3d seeded region growing// 2020 International Joint Conference on Neural Networks (IJCNN). Glasgow: IEEE, 2020: 612-621.
|
| 15. |
Lukas Z S W, Kohlhammer J, K?hm M. Combining seeded region growing and k-nearest neighbours for the segmentation of routinely acquired spatio-temporal image data. Int J Comput Ass Rad, 2023, 18(11): 2063-2072.
|
| 16. |
Zhang Huahai, Bai Peiru, Min Xiaolin, et al. Hepatic vessel segmentation based on animproved 3D region growing algorithm. Journal of Physics: Conference Series, 2020, 1486(3): 32-38.
|
| 17. |
Wang Monan, Li Donghui. An automatic segmentation method for lung tumor based on improved region growing algorithm. Diagnostics, 2022, 12(12): 2971-2982.
|
| 18. |
范然, 鈕葉新, 金小剛, 等. 計算機輔助牙齒隱形正畸系統. 計算機輔助設計與圖形學學報, 2013, 25(1): 81-92.
|
| 19. |
馬勇, 柯永振, 楊帥. 基于網格抽取的牙齒模型快速分割算法. 計算機應用與軟件, 2018, 35(5): 247-252.
|
| 20. |
Zhang Y, Paik J, Koschan A, et al. A simple and efficient algorithm for part decomposition of 3d triangulated models based on curvature analysis// 2002 International Conference on Image Processing. Rochester: IEEE, 2002: 273-276.
|
| 21. |
馬天, 李赟, 李嬌嬌, 等. 基于目標區域約束的牙頜模型分割線探測方法. 系統仿真學報, 2022, 34(2): 376-384.
|
| 22. |
Wu T H, Lian C, Piers C, et al. Deep learning for orthodontic CAD/CAM technologies. Machine Learning in Dentistry. Cham: Springer International Publishing. 2021: 117-129.
|
| 23. |
Ben H A, Smaoui O, Chaabouni C H, et al. Teeth3DS: a benchmark for teeth segmentation and labeling from intra-oral 3D scans. arXiv, 2022, 2022: 2210.06094.
|