1. |
于婉琦, 周延民, 趙靜輝. 口腔種植體新材料的研究現狀. 國際口腔醫學雜志, 2019, 46(4): 488-496.
|
2. |
崔驥, 劉曄, 李永強, 等. ZnO/TiO2復合薄膜的表面形貌分析及光散射特性研究. 中國激光, 2011, 38(2): 191-197.
|
3. |
盛美春, 羅小龍, 謝廣平. 紫外線光功能化對二氧化鈦納米管表面改性鈦種植體骨結合的影響. 口腔材料器械雜志, 2023, 32(2): 116-119.
|
4. |
Kim J, Lee H, Jang T, et al. Characterization of titanium surface modification strategies for osseointegration enhancement. Metals, 2021, 11(4): 618.
|
5. |
Ding Y, Tao B L, Ma R C , et al. Surface modification of titanium implant for repairing/improving microenvironment of bone injury and promoting osseointegration. Journal of Materials Science & Technology, 2023, 143: 1-11.
|
6. |
李鶯, 李長義. 鈦種植體表面改性策略及對骨整合的影響. 中國組織工程研究, 2013, 17(29): 5395-5402.
|
7. |
Lo K W, Ashe K M, Kan H M, et al. The role of small molecules in musculoskeletal regeneration. Regenerative Medicine, 2012, 7(4): 535-549.
|
8. |
Yun Y R, Jang J H, Jeon E, et al. Administration of growth factors for bone regeneration. Regenerative Medicine, 2012, 7(3): 369-385.
|
9. |
蔣滔, 程祥榮, 王貽寧, 等. 不同表面處理方法對純鈦表面形貌及成分的影響. 生物醫學工程學雜志, 2006, 23(4): 814-817.
|
10. |
Ariganello M B, Guadarrama Bello D, Rodriguez-Contreras A, et al. Surface nanocavitation of titanium modulates macrophage activity. International Journal of Nanomedicine, 2018, 13: 8297-8308.
|
11. |
Wang Z, Ren B. Preparation of superhydrophobic titanium surface via the combined modification of hierarchical micro/nanopatterning and fluorination. Journal of Coatings Technology and Research, 2022, 19(3): 967-975.
|
12. |
Luo H, Diao X, Qian F, et al. Fabrication of a micro/nanocomposite structure on the surface of high oxygen concentration titanium to promote bone formation. Biomaterials Advances, 2023, 154: 213631.
|
13. |
Souza J C M, Sordi M B, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 2019, 94: 112-131.
|
14. |
錢捷, 楊策堯, 盛迅, 等. 鈦種植體表面微形態對成骨細胞生長影響的體外研究. 臨床口腔醫學雜志, 2005, 6: 348-350.
|
15. |
Spriano S, Ferraris S, Bollati D, et al. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants. Applied Surface Science, 2015, 349: 599-608.
|
16. |
Tang S, Wang Y, Zong Z Y, et al. Enhanced osteogenic activity of titania-modified zirconia implant by ultraviolet irradiation. Frontiers in Bioengineering and Biotechnology, 2022, 10: 945869.
|
17. |
van Velzen F J, Ofec R, Schulten E A, et al. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients. Clinical Oral Implants Research, 2015, 26(10): 1121-1128.
|
18. |
Aita H, Hori N, Takeuchi M, et al. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials, 2009, 30(6): 1015-1025.
|
19. |
Zhang W, Liu J, Shi H, et al. Communication between nitric oxide synthase and positively-charged surface and bone formation promotion. Colloids and Surfaces B: Biointerfaces, 2016, 148: 354-362.
|
20. |
Liao Y, Li L, Yang P, et al. Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility. Colloids and Surfaces B: Biointerfaces, 2017, 155: 314-322.
|
21. |
Wang J W, Ma Y, Guan J, et al. Characterizations of anodic oxide films formed on Ti6Al4V in the silicate electrolyte with sodium polyacrylate as an additive. Surface and Coatings Technology, 2018, 338: 14-21.
|
22. |
Jemt T, Johansson J. Implant treatment in the edentulous maxillae: a 15-year follow-up study on 76 consecutive patients provided with fixed prostheses. Clinical Implant Dentistry and Related Research, 2006, 8(2): 61-69.
|
23. |
Gittens R A, McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 2011, 32(13): 3395-3403.
|
24. |
Rupp F, Scheideler L, Olshanska N, et al. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research Part A, 2006, 76(2): 323-334.
|
25. |
Carradò A, Perrin-Schmitt F, Le Q V, et al. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration. Dental Materials, 2017, 33(3): 321-332.
|
26. |
Guo Q, Zhou C, Ma Z, et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Advanced Materials, 2019, 31(50): e1901997.
|
27. |
張悅, 夏海斌. 堿熱處理制備生物活性鈦種植體. 國際口腔醫學雜志, 2007, 3: 216-219.
|
28. |
Müller L, Müller F A. Preparation of SBF with different HCO3— content and its influence on the composition of biomimetic apatites. Acta Biomaterialia, 2006, 2(2): 181-189.
|
29. |
Fujibayashi S, Nakamura T, Nishiguchi S, et al. Bioactive titanium: effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. Journal of Biomedical Materials Research, 2001, 56(4): 562-570.
|
30. |
Roy M, Pompella A, Kubacki J, et al. Photofunctionalization of dental zirconia oxide: surface modification to improve bio-integration preserving crystal stability. Colloids Surfaces B: Biointerfaces, 2017, 156: 194-202.
|