| 1. |
Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
| 2. |
Lei S, Zheng R, Zhang S, et al. Breast cancer incidence and mortality in women in China: temporal trends and projections to 2030. Cancer Biol Med, 2021, 18(3): 900-909.
|
| 3. |
Shi Z, Lin J, Wu Y, et al. Burden of cancer and changing cancer spectrum among older adults in China: Trends and projections to 2030. Cancer Epidemiol, 2022, 76: 102068.
|
| 4. |
Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health, 2018, 6(5): e555-e567.
|
| 5. |
Hildebrandt M G, Naghavi-Behzad M, Vogsen M. A role of FDG-PET/CT for response evaluation in metastatic breast cancer?. Semin Nucl Med, 2022, 52(5): 520-530.
|
| 6. |
Chen W. Clinical application of PET in pediatric brain tumors. PET Clin, 2008, 3(4): 517-529.
|
| 7. |
辛陽. CT成像技術的發展及技術特點. 科技創新導報, 2018, 15(4): 132-133.
|
| 8. |
Li Y, Dai Y, Guo Y, et al. Correlation analysis of sup18/sup F-FDG PET/CT for the staging and treatment effect assessment of breast cancer. Journal of X-Ray Science and Technology, 2019, 27(6): 1131-1144.
|
| 9. |
Cruz-Roa A, Arevalo J, Judkins A, et al. A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning//International Symposium on Medical Information Processing and Analysis. International Society for Optics and Photonics, 2015, DOI: 10.1117/12.2208825.
|
| 10. |
趙旭. 基于醫學先驗的多尺度乳腺超聲腫瘤實例分割方法. 哈爾濱: 哈爾濱工業大學, 2019.
|
| 11. |
徐勝舟, 程時宇. 基于全卷積神經網絡遷移學習的乳腺腫塊圖像分割. 中南民族大學學報: 自然科學版, 2019, 38(2): 278-284.
|
| 12. |
Al-Antari M A, Al-Masni M A, Choi M T, et al. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform, 2018, 117: 44-54.
|
| 13. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 234–241.
|
| 14. |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation//European Conference on Computer Vision. Springer, Cham, 2018: 833-851.
|
| 15. |
Zhuang J. LadderNet: multi-path networks based on U-Net for medical image segmentation. arXiv preprint, 2018, DOI: 10.48550/arXiv.1810.07810.
|
| 16. |
Kumar A, Fulham M, Feng D, et al. Co-learning feature fusion maps from PET-CT images of lung cancer. IEEE Trans Med Imaging, 2019, 39(1): 204-217.
|
| 17. |
Xiao X, Lian S, Luo Z, et al. Weighted Res-UNet for high-quality retina vessel segmentation//2018 9th International Conference on Information Technology in Medicine and Education (ITME). IEEE Computer Society, 2018: 327-331.
|
| 18. |
Guan S, Khan A A, Sikdar S, et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE J Biomed Health Inform, 2020, 24(2): 568-576.
|
| 19. |
Isensee F, J?ger P F, Kohl S A A, et al. Automated design of deep learning methods for biomedical image segmentation. arXiv preprint, 2019, arXiv: 1904.08128.
|
| 20. |
Chen J, Lu Y, Yu Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint, 2021, DOI: 10.48550/arXiv.2102.04306.
|
| 21. |
Jain J, Li J, Chiu M T, et al. OneFormer: one transformer to rule universal image segmentation. arXiv preprint, 2022, DOI: 10.48550/arXiv.2211.06220.
|
| 22. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint, 2020, DOI: 10.48550/arXiv.2010.11929.
|
| 23. |
Xie E, Wang W, Yu Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers. arXiv preprint, 2021, DOI: 10.48550/arXiv.2105.15203.
|
| 24. |
Liu Z, Lin Y, Cao Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows. arXiv preprint, 2021. DOI: 10.48550/arXiv.2103.14030.
|
| 25. |
Ji S, Yang M, Yu K. 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell, 2013, 35(1): 221-231.
|
| 26. |
Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. arXiv preprint, 2017. DOI: 10.48550/arXiv.1706.03762.
|
| 27. |
余輝, 張書旭. 4DCT圖像二維配準與三維配準的區別. 醫療裝備, 2011, 24(7): 6-8.
|
| 28. |
胡德文, 陳廣學, 朱劍銘, 等. 基于ROI的醫學圖像預處理技術研究. 醫學影像學雜志, 2018, 28(4): 585-589.
|
| 29. |
Fukuda T, Fernandez R, Rosenberg A, et al. Data augmentation improves recognition of foreign accented speech. Interspeech, 2018, 18(9): 2409-2413.
|
| 30. |
侯向丹, 李紫宇, 牛敬鈺, 等. 結合注意力機制和多路徑U-Net的視網膜血管分割. 計算機輔助設計與圖形學學報, 2023, 35(1): 55-65.
|