| 1. |
劉振宅, 辛連起, 劉喆, 等. 牙體組織的阻抗及其在齲齒診斷中的應用. 生物醫學工程學雜志, 1990, 7(2): 167.
|
| 2. |
于思榮, 張新平, 何鎮明, 等. Ti-Fe-Mo-Mn-Nb-Zr合金在不同pH值乳酸中的腐蝕性能研究. 生物醫學工程學雜志, 2005, 22(1): 91-94.
|
| 3. |
Qiao D, Li Y, Pan J, et al. Effect of plasma activated water in caries prevention: the caries related biofilm inhibition effects and mechanisms. Plasma Chemistry and Plasma Processing, 2022, 42(4): 801-814.
|
| 4. |
Laroussi M. Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Processes and Polymers, 2005, 2(5): 391-400.
|
| 5. |
Goree J, Liu B, Drake D, et al. Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. IEEE Transactions on Plasma Science, 2006, 34(4): 1317-1324.
|
| 6. |
Imola M, Judit P, Alpar S, et al. Deactivation of Streptococcus mutans biofilms on a tooth surface using He dielectric barrier discharge at atmospheric pressure. Plasma Science and Technology, 2013, 15(6): 535-541.
|
| 7. |
Nima G, Harth-Chu E, Hiers RD, et al. Antibacterial efficacy of non-thermal atmospheric plasma against Streptococcus mutans biofilm grown on the surfaces of restorative resin composites. Sci Rep, 2021, 11(1): 23800.
|
| 8. |
Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dentistry and Oral Epidemiology, 2005, 33(4): 248-255.
|
| 9. |
Hong Q, Dong X Q, Chen M, et al. An in vitro and in vivo study of plasma treatment effects on oral biofilms. Journal of Oral Microbiology, 2019, 11(1): 1603524.
|
| 10. |
Yoo E M, Choi Y R, Kang M K. Antimicrobial efficacy of nitrogen-based non-thermal atmospheric pressure plasma jet on dental biofilm. Iranian Journal of Science and Technology Transaction a-Science, 2020, 44(5): 1541-1547.
|
| 11. |
Filoche S K, Sissons C H, Sladek R E J, et al. Cold plasma treatment of in vitro dental plaque//Conference of the NATO-Advanced-Study-Institute on Plasma Assisted Decontamination of Biological and Chemical Agents, Cesme: Plasma Assisted Decontamination of Biological and Chemical Agents, 2007: 161.
|
| 12. |
Sladek R E J, Stoffels E, Walraven R, et al. Plasma treatment of dental cavities: a feasibility study. IEEE Transactions on Plasma Science, 2004, 32(4): 1540-1543.
|
| 13. |
唐林, 王松, 郭柯宇, 等. 低溫等離子體活化水在食品殺菌保鮮中的應用. 中國食品學報, 2021, 21(12): 347-357.
|
| 14. |
奚文灝, 蘭彥, 沈潔, 等. 大氣壓等離子體射流引發液相OH與H2O2的研究. 安徽大學學報: 自然科學版, 2022, 46(3): 3-13.
|
| 15. |
Jungbauer G, Moser D, Mueller S, et al. The antimicrobial effect of cold atmospheric plasma against dental pathogens-a systematic review of in-vitro studies. Antibiotics (Basel), 2021, 10(2): 211.
|
| 16. |
Garcia-Alcantara E, Lopez-Callejas R, Pena-Eguiluz R, et al. Time effect and aliquot concentration in Streptococcus mutans elimination by plasma needle//14th Latin American Workshop on Plasma Physics (LAWPP), Mar del Plata: IOP Publishing, 2011: 370.
|
| 17. |
Emi U, Tomoko O, Hiromitsu Y, et al. Plasma sterilization of caries-infected dentin model with reduced-pH method. The Japanese Journal of Conservative Dentistry, 2015, 58(2): 101-108.
|
| 18. |
Ye G P, Zhang Q, Pan H, et al. Efficiency of pathogenic bacteria inactivation by non-thermal plasma activated water. Scientia Sinica Vitae, 2013, 43(8): 679-684.
|
| 19. |
Li Y, Pan J, Ye G, et al. In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. European Journal of Oral Sciences, 2017, 125(6): 463-470.
|
| 20. |
Yamazaki H, Ohshima T, Tsubota Y, et al. Microbicidal activities of low frequency atmospheric pressure plasma jets on oral pathogens. Dental Materials Journal, 2011, 30(3): 384-391.
|
| 21. |
Hong Q, Dong X, Chen M, et al. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush. Japanese Journal of Applied Physics, 2016, 55(7): 2.
|
| 22. |
Tasaki T, Ohshima T, Usui E, et al. Plasma-treated water eliminates Streptococcus mutans in infected dentin model. Dental Materials Journal, 2017, 36(4): 422-428.
|
| 23. |
Abonti T R, Kaku M, Kojima S, et al. Irradiation effects of low temperature multi gas plasma jet on oral bacteria. Dental Materials Journal, 2016, 35(5): 822-828.
|
| 24. |
Yang B, Chen J, Yu Q, et al. Oral bacterial deactivation using a low-temperature atmospheric argon plasma brush. Journal of Dentistry, 2011, 39(1): 48-56.
|
| 25. |
Rupf S, Lehmann A, Hannig M, et al. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. Journal of Medical Microbiology, 2010, 59(2): 206-212.
|
| 26. |
Zhang X, Huang J, Liu X, et al. Treatment of Streptococcus mutans bacteria by a plasma needle. Journal of Applied Physics, 2009, 105. DOI: 10.1063/1.3080249.
|
| 27. |
Sladek R E, Filoche S K, Sissons C H, et al. Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma. Letters in Applied Microbiology, 2007, 45(3): 318-323.
|
| 28. |
Koban I, Holtfreter B, Hübner N, et al. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro-proof of principle experiment. Journal of Clinical Periodontology, 2011, 38(10): 956-965.
|
| 29. |
Goree J, Liu B, Drake D. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria. Journal of Physics D: Applied Physics, 2006, 39(16): 3479-3486.
|
| 30. |
劉小虎. 大氣壓等離子體射流及其滅菌研究. 上海: 東華大學, 2012.
|
| 31. |
Ikawa S, Kitano K, Hamaguchi S. Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application. Plasma Processes and Polymers, 2010, 7(1): 33-42.
|
| 32. |
Ma Y, Marquis R E. Thermophysiology of streptococcus mutans and related lactic-acid bacteria. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 1997, 72(2): 91-100.
|
| 33. |
周穎, 衛華, 樊明文. 變形鏈球菌的適應性耐酸能力. 現代口腔醫學雜志, 2003, 17(4): 285-287.
|
| 34. |
Ma M, Zhang Y, Lv Y, et al. The key reactive species in the bactericidal process of plasma activated water. Journal of Physics D: Applied Physics, 2020, 53(18): 185207.
|
| 35. |
Ikawa S, Tani A, Nakashima Y, et al. Physicochemical properties of bactericidal plasma-treated water. Journal of Physics D: Applied Physics, 2016, 49(42): 425401.
|