1. |
范競一, 馬迅, 李偉, 等. 醫用鈦合金表面改性技術研究進展. 功能材料, 2022, 53(7): 7027-7039.
|
2. |
Pantovi? Pavlovi? M R, Stanojevic B P, Pavlovic M M, et al. Anodizing/anaphoretic electrodeposition of nano-calcium phosphate/chitosan lactate multifunctional coatings on titanium with advanced corrosion resistance, bioactivity, and antibacterial properties. ACS Biomater Sci Eng, 2021, 7(7): 3088-3102.
|
3. |
Minkiewicz-Zochniak A, Jarzynka S, Iwańska A, et al. Biofilm formation on dental implant biomaterials by Staphylococcus aureus strains isolated from patients with cystic fibrosis. Materials, 2021, 14(8): 2030-2045.
|
4. |
Amin Yavari S, Castenmiller S M, van Strijp J A G, et al. Combating implant infections: shifting focus from bacteria to host. Adv Mater, 2020, 32(43): 2002962-2002987.
|
5. |
Ray S S, Dangayach R, Kwon Y N. Surface engineering for anti-wetting and antibacterial membrane for enhanced and fouling resistant membrane distillation performance. Chem Eng J, 2021, 405: 126702-126719.
|
6. |
Visan A, Cristescu R, Stefan N, et al. Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering. Appl Surf Sci, 2017, 417: 234-243.
|
7. |
劉娣, 宮月嬌, 肖群, 等. 鈦表面接枝聚乙二醇-精氨酸-甘氨酸-天冬氨酸聚合物分子刷對細菌和成骨細胞黏附的影響. 中華口腔醫學雜志, 2016, 51(8): 491-495.
|
8. |
袁璋. 鈦基植入體促成骨及抗菌表面改性研究. 重慶: 重慶大學, 2020.
|
9. |
He X, Zhang J, Xie L, et al. Phytic acid-promoted rapid fabrication of natural polypeptide coatings for multifunctional applications. Chem Eng J, 2022, 440: 135917-135927.
|
10. |
馬朝陽, 方文良, 肖群, 等. 載銀多聚賴氨酸-海藻酸鈉靜電自組裝多層膜修飾鈦表面及其抗菌研究. 口腔材料器械雜志, 2017, 26(2): 67-73.
|
11. |
孫玉潔, 章露嬌, 趙玉清, 等, 基于表面引發聚合構建表面抗菌功能化牙科植入體. 表面技術, 2019, 48(7): 237-246, 255 . .
|
12. |
Teixeira G T L, Gelamo R V, Mateus Santos Obata M, et al. Exploring the functionalization of Ti-6Al-4V alloy with the novel antimicrobial peptide JIChis-2 via plasma polymerization. Biofouling, 2023, 39(1): 47-63.
|
13. |
Chua P H, Neoh K G, Kang E T, et al. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 2008, 29(10): 1412-1421.
|
14. |
張廣瑞. 殼聚糖季銨鹽和PAA/PAH涂層鎳鈦合金的制備與細胞相容性研究. 蘭州: 蘭州大學, 2020.
|
15. |
Durdu S, Arslanturk A, Aktug S L, et al. A comparison study on bioactivity and antibacterial properties of Ag-, Cu-and Zn-deposited oxide coatings produced on titanium. J Mater Sci, 2022, 57: 17203-17218.
|
16. |
李嬌嬌, 韋章澳, 張維波, 等. 鈦表面載銀的硫酸乙酰肝素/殼聚糖抗菌涂層的構建. 安徽醫科大學學報, 2022, 57(5): 754-758.
|
17. |
Chen X, Cai K, Fang J, et al. Dual action antibacterial TiO2 nanotubes incorporated with silver nanoparticles and coated with a quaternary ammonium salt (QAS). Surf Coat Technol, 2013, 216: 158-165.
|
18. |
Zuo K, Wang L, Wang Z, et al. Zinc-doping induces evolution of biocompatible strontium–calcium-phosphate conversion coating on titanium to improve antibacterial property. ACS Appl Mater Interfaces, 2022, 14(6): 7690-7705.
|
19. |
Hu Y, Zhou H, Liu T, et al. Construction of mussel-inspired dopamine-Zn2+ coating on titanium oxide nanotubes to improve hemocompatibility, cytocompatibility, and antibacterial activity. Front Bioeng Biotech, 2022, 10: 884258.
|
20. |
Li B, Yang T, Sun R, et al. Biological and antibacterial properties of composite coatings on titanium surfaces modified by microarc oxidation and sol-gel processing. Dent Mater J, 2021, 40(2): 455-463.
|
21. |
Liang S, Jian L, Wang D, et al. Enhancement of antibacterial and cytocompatibility of Ti by Zn-doped BST coatings. Mater Lett, 2023, 338: 134018-134022.
|
22. |
李興平. 鈦表面載銅抗菌功能膜制備及性能研究. 瀘州: 西南醫科大學, 2020.
|
23. |
Liu S, Zhang Z, Zhang J, et al. Construction of a TiO2/Cu2O multifunctional coating on Ti-Cu alloy and its influence on the cell compatibility and antibacterial properties. Surf Coat Technol, 2021, 421: 127438-127453.
|
24. |
Fang J, Wan Y, Sun Y, et al. Near-infrared-activated nanohybrid coating with black phosphorus/zinc oxide for efficient biofilm eradication against implant-associated infections. Chem Eng J, 2022, 435: 134935-134949.
|
25. |
Akhavan O, Azimirad R, Safa S, et al. Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. J Mater Chem, 2010, 20(35): 7386-7392.
|
26. |
Ueda T, Ueda K, Ito K, et al. Visible-light-responsive antibacterial activity of Au-incorporated TiO2 layers formed on Ti–(0–10) at% Au alloys by air oxidation. J Biomed Mater Res A, 2019, 107(5): 991-1000.
|
27. |
Zeng J, Wang Y, Sun Z, et al. A novel biocompatible PDA/IR820/DAP coating for antibiotic/photodynamic/photothermal triple therapy to inhibit and eliminate Staphylococcus aureus biofilm. Chem Eng J, 2020, 394: 125017-125030.
|
28. |
Yuan Z, Tao B, He Y, et al. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials, 2019, 217: 119290-119307.
|
29. |
Xu K, Zhou M, Chen W, et al. Bioinspired polydopamine/graphene oxide/collagen nanofilms as a controlled release carrier of bioactive substances. Chem Eng J, 2021, 405: 126930-126945.
|
30. |
He F, Li J, Wang Y, et al. Design of cefotaxime sodium-loaded polydopamine coatings with controlled surface roughness for titanium implants. ACS Biomater Sci Eng, 2022, 8(11): 4751-4763.
|
31. |
Yuan Z, Wu J, Fu Z, et al. Polydopamine-mediated interfacial functionalization of implants for accelerating infected bone repair through light‐activatable antibiosis and carbon monoxide gas regulated macrophage polarization. Adv Funct Mater, 2022, 32(27): 2200374-2200389.
|
32. |
Yan H, Zhang B, Zhang Y, et al. Fluorescent carbon dot–curcumin nanocomposites for remarkable antibacterial activity with synergistic photodynamic and photothermal abilities. ACS Appl Bio Mater, 2021, 4(9): 6703-6718.
|
33. |
Dai D, Zhou D, He L, et al. Graphene oxide nanocoating for enhanced corrosion resistance, wear resistance and antibacterial activity of nickel-titanium shape memory alloy. Surf Coat Technol, 2022, 431: 128012-128025.
|
34. |
Qin W, Ma J, Liang Q, et al. Tribological, cytotoxicity and antibacterial properties of graphene oxide/carbon fibers/polyetheretherketone composite coatings on Ti–6Al–4V alloy as orthopedic/dental implants. J Mech Behav of Biomed, 2021, 122: 104659-104667.
|
35. |
Chai M Z, An M W, Zhang X Y, et al. In vitro and in vivo antibacterial activity of graphene oxide-modified porous TiO2 coatings under 808-nm light irradiation. Rare Met, 2022, 41(2): 540-545.
|
36. |
Eshghinejad P, Farnoush H, Bahrami M S, et al. Electrophoretic deposition of bioglass/graphene oxide composite on Ti-alloy implants for improved antibacterial and cytocompatible properties. Mater Technol, 2020, 35(2): 69-74.
|
37. |
Huo J, Jia Q, Wang K, et al. Metal-phenolic networks assembled on TiO2 nanospikes for antimicrobial peptide deposition and osteoconductivity enhancement in orthopedic applications. Langmuir, 2023, 39(3): 1238-1249.
|