| 1. |
Li M, Gao X, Wang H, et al. Phosphoglycerate mutase 2 is elevated in serum of patients with heart failure and correlates with the disease severity and patient's prognosis. Open Medicine, 2021, 16(1): 1134-1142.
|
| 2. |
Zaharova S, Litwack K, Gopalakrishnan S, et al. Self-management in heart failure: the importance of self-regulation but not complexity of condition. West J Nurs Res, 2022, 44(4): 375-382.
|
| 3. |
Groenewegen A, Rutten F H, Mosterd A, et al. Epidemiology of heart failure. European Journal of Heart Failure, 2020, 22(8): 1342–1356.
|
| 4. |
Park L G, Dracup K, Whooley M A, et al. Sedentary lifestyle associated with mortality in rural patients with heart failure. Eur J Cardiovasc Nurs, 2019, 18(4): 318-324.
|
| 5. |
Ahmad F S, Luo Y, Wehbe R M, et al. Advances in machine learning approaches to heart failure with preserved ejection fraction. Heart Fail Clin, 2022, 18(2): 287-300.
|
| 6. |
Baashar Y, Alkawsi G, Alhussian H, et al. Effectiveness of artificial intelligence models for cardiovascular disease prediction: network meta-analysis. Comput Intell Neurosci, 2022, 2022: 5849995.
|
| 7. |
中國醫療保健國際交流促進會急診醫學分會, 中華醫學會急診醫學分會, 中國醫師協會急診醫師分會, 等. 急性心力衰竭中國急診管理指南(2022). 中國急救醫學, 2022, 42(8): 648-670.
|
| 8. |
Penso M, Solbiati S, Moccia S, et al. Decision support systems in HF based on deep learning technologies. Curr Heart Fail Rep, 2022, 19(2): 38–51.
|
| 9. |
Kwon J M, Kim K H, Jeon K H, et al. Development and validation of deep-learning algorithm for electrocardiography-based heart failure identification. Korean Circ J, 2019, 49(7): 629-639.
|
| 10. |
Acharya U R, Fujita H, Oh S L, et al. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Applied Intelligence, 2019, 49:16–27.
|
| 11. |
Lih O S, Jahmunah V, San T R, et al. Comprehensive electrocardiographic diagnosis based on deep learning. Artif Intell Med, 2020, 103: 101789.
|
| 12. |
Lei M, Li J, Li M, et al. An improved UNet++ model for congestive heart failure diagnosis using short-term RR intervals. Diagnostics (Basel), 2021, 11(3):534.
|
| 13. |
國家老年醫學中心國家老年疾病臨床醫學研究中心, 中國老年醫學學會心血管病分會, 北京醫學會心血管病學會影像學組. 中國成人心力衰竭超聲心動圖規范化檢查專家共識. 中國循環雜志, 2019, 34(5): 422-436.
|
| 14. |
Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature, 2020, 580(7802): 252–256.
|
| 15. |
Tromp J, Seekings P J, Hung C L, et al. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. The Lancet Digit Health, 2022, 4(1): e46-e54.
|
| 16. |
沈文茜, 杜國慶. 機器學習在超聲心動圖中的應用進展. 心血管病學進展, 2021, 42(1): 43-46.
|
| 17. |
Seah J C Y, Tang J S N, Kitchen A, et al. Chest radiographs in congestive heart failure: visualizing neural network learning. Radiology, 2019, 290(2): 514-522.
|
| 18. |
Matsumoto T, Kodera S, Shinohara H, et al. Diagnosing heart failure from chest X-ray images using deep learning. Int Heart J, 2020, 61(4):781-786.
|
| 19. |
Zarvani M, Saberi S, Azmi R, et al. Residual learning: a new paradigm to improve deep learning-based segmentation of the left ventricle in magnetic resonance imaging cardiac images. J Med Signals Sens, 2021, 11(3):159-168.
|
| 20. |
Choi E, Schuetz A, Stewart W F, et al. Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association, 2017, 24(2):361–370.
|
| 21. |
Rasmy L, Wu Y, Wang N, et al. A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR dataset. J Biomed Inform, 2018, 84:11–16.
|
| 22. |
Madanan M , Zulkefli N , Velayudhan N C. Designing a hybrid artificial intelligent clinical decision support system using artificial neural network and artificial bee colony for predicting heart failure rate// 2021 International Conference on Computer Communication and Informatics (ICCCI -2021), Coimbatore: IEEE, 2021.
|
| 23. |
Kwon B C, Choi M J, Kim J T, et al. RetainVis: visual analytics with interpretable and interactive recurrent neural networks on electronic medical records. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1):299-309.
|
| 24. |
Bello G A, Dawes T, Duan J, et al. Deep learning cardiac motion analysis for human survival prediction. Nature machine intelligence, 2019, 1: 95–104.
|
| 25. |
Kwon J M, Kim K H, Jeon K H, et al. Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography. Echocardiography, 2019, 36(2):213-218.
|
| 26. |
Wang Z, Zhu Y, Li D, et al. Feature rearrangement based deep learning system for predicting heart failure mortality. Comput Methods Programs Biomed, 2020, 191:105383.
|
| 27. |
付健. 基于MIMIC-Ⅲ數據庫的心衰患者死亡率預測模型研究. 太原: 太原理工大學, 2021.
|
| 28. |
Chun S, Tu J V, Wijeysundera H C, et al. Lifetime analysis of hospitalizations and survival of patients newly admitted with heart failure. Circ Heart Fail, 2012, 5(4): 414-421.
|
| 29. |
Xiao C, Ma T, Dieng A B, et al. Readmission prediction via deep contextual embedding of clinical concepts. PLoS ONE, 2018, 13(4): e0195024.
|
| 30. |
Golas S B, Shibahara T, Agboola S, et al. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure:a retrospective analysis of electronic medical records data. BMC Med Inform Decis Mak, 2018, 18(1): 44.
|
| 31. |
Allam A, Nagy M, Thoma G, et al. Neural networks versus Logistic regression for 30?days all-cause readmission prediction. Sci Rep, 2019, 9(1): 9277.
|
| 32. |
Ashfaq A, Sant'Anna A, Lingman M, et al. Readmission prediction using deep learning on electronic health records. J Biomed Inform, 2019, 97: 103256.
|
| 33. |
達婧瑋, 顏嘉麒, 鄧三鴻, 等. 基于深度學習的重復住院預測模型研究——以心臟病為例. 數據分析與知識發現, 2020, 4(11): 63-73.
|
| 34. |
Pishgar M, Theis J, Del Rios M, et al. Prediction of unplanned 30-day readmission for ICU patients with heart failure. BMC Med Inform Decis Mak, 2022, 22(1): 117.
|
| 35. |
Nakamura T, Sasano T. Artificial intelligence and cardiology: current status and perspective. Journal of Cardiology, 2022, 79(3): 326-333.
|
| 36. |
Ribeiro M T, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 1135–1144.
|
| 37. |
Van den Eynde J, Lachmann M, Laugwitz K L, et al. Successfully implemented artificial intelligence and machine learning applications in cardiology: state-of-the-art review. Trends Cardiovasc Med, 2022. DOI: 10.1016/j.tcm.2022.01.010.
|
| 38. |
Wang F, Kaushal R, Khullar D. Should health care demand interpretable artificial intelligence or accept “black box” medicine?. Ann Intern Med, 2020, 172(1): 59–60.
|
| 39. |
Lundberg S M, Lee S I. A unified approach to interpreting model predictions//In Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 4768–4777.
|