| 1. |
Sekulic M, Zacharias M, Medalion B. Ischemic cardiomyopathy and heart failure. Circ Heart Fail, 2019, 12(6): e006006.
|
| 2. |
Bahit M C, Kochar A, Granger C B. Post-myocardial infarction heart failure. JACC Heart Fail, 2018, 6(3): 179-186.
|
| 3. |
中國醫師協會心血管內科醫師分會, 中國心血管健康聯盟, 心肌梗死后心力衰竭防治專家共識工作組. 2020心肌梗死后心力衰竭防治專家共識. 中國循環雜志, 2020, 35(12): 1166-1180.
|
| 4. |
Frangogiannis N G. Pathophysiology of myocardial infarction. Comprehensive Physiology, 2015, 5(4): 1841.
|
| 5. |
Humeres C, Frangogiannis N G. Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl Sci, 2019, 4(3): 449-467.
|
| 6. |
Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res, 2016, 365(3): 563-581.
|
| 7. |
López B, Ravassa S, Moreno M U, et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol, 2021, 18(7): 479-498.
|
| 8. |
劉赟, 馬駿, 卜東魁, 等. 心力衰竭治療的研究進展. 中國介入心臟病學雜志, 2017, 25(12): 710-714.
|
| 9. |
Sutton M G, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation, 2000, 101(25): 2981-2988.
|
| 10. |
Zhang Q, Wang L, Wang S, et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther, 2022, 7(1): 78.
|
| 11. |
Damluji A A, van Diepen S, Katz J N, et al. Mechanical complications of acute myocardial infarction: a scientific statement from the American Heart Association. Circulation, 2021, 144(2): e16-e35.
|
| 12. |
Gao X M, White D A, Dart A M, et al. Post-infarct cardiac rupture: recent insights on pathogenesis and therapeutic interventions. Pharmacol Ther, 2012, 134(2): 156-179.
|
| 13. |
Lin X, Liu Y, Bai A, et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat Biomed Eng, 2019, 3(8): 632-643.
|
| 14. |
Tallquist M D. Cardiac fibroblast diversity. Annual Review of Physiology, 2020, 82: 63-78.
|
| 15. |
Tallquist M D, Molkentin J D. Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol, 2017, 14(8): 484-491.
|
| 16. |
Prabhu S D, Frangogiannis N G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res, 2016, 119(1): 91-112.
|
| 17. |
Marinelli B E, Costantini A, Mancini G, et al. Nilotinib treatment of patients affected by chronic graft-versus-host disease reduces collagen production and skin fibrosis by downmodulating the TGF-β and p-SMAD pathway. Biol Blood Marrow Transplant, 2020, 26(5): 823-834.
|
| 18. |
Shaker M E, Salem H A, Shiha G E, et al. Nilotinib counteracts thioacetamide-induced hepatic oxidative stress and attenuates liver fibrosis progression. Fundam Clin Pharmacol, 2011, 25(2): 248-257.
|
| 19. |
Iyoda M, Shibata T, Hirai Y, et al. Nilotinib attenuates renal injury and prolongs survival in chronic kidney disease. J Am Soc Nephrol, 2011, 22(8): 1486-1496.
|
| 20. |
Distler J H, Distler O. Tyrosine kinase inhibitors for the treatment of fibrotic diseases such as systemic sclerosis: towards molecular targeted therapies. Ann Rheum Dis, 2010, 69 Suppl 1: i48-i51.
|
| 21. |
Brazzelli V, Grasso V, Borroni G. Imatinib, dasatinib and nilotinib: a review of adverse cutaneous reactions with emphasis on our clinical experience. J Eur Acad Dermatol Venereol, 2013, 27(12): 1471-1480.
|
| 22. |
Kim Y C, Park J H, Prausnitz M R. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev, 2012, 64(14): 1547-1568.
|
| 23. |
Prausnitz M R, Langer R. Transdermal drug delivery. Nat Biotechnol, 2008, 26(11): 1261-1268.
|
| 24. |
Stern D, Cui H. Crafting polymeric and peptidic hydrogels for improved wound healing. Adv Healthc Mater, 2019, 8(9): e1900104.
|
| 25. |
Luo Z, Sun W, Fang J, et al. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv Healthc Mater, 2019, 8(3): e1801054.
|
| 26. |
Yue K, Trujillo-de Santiago G, Alvarez M M, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73: 254-271.
|
| 27. |
Algeciras L, Palanca A, Maestro D, et al. Epigenetic alterations of TGFβ and its main canonical signaling mediators in the context of cardiac fibrosis. J Mol Cell Cardiol, 2021, 159: 38-47.
|
| 28. |
Ma Z G, Yuan Y P, Wu H M, et al. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci, 2018, 14(12): 1645-1657.
|
| 29. |
Wu M, Xing Q, Duan H, et al. Suppression of NADPH oxidase 4 inhibits PM2.5-induced cardiac fibrosis through ROS-P38 MAPK pathway. Sci Total Environ, 2022, 837: 155558.
|
| 30. |
李軼男, 王萍, 陳暉. 冠狀動脈微循環障礙對心肌纖維化的影響及研究現狀. 中國介入心臟病學雜志, 2018, 26(8): 468-471.
|
| 31. |
Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest, 2017, 127(10): 3770-3783.
|
| 32. |
Liu Y, Wang Z, Kwong S Q, et al. Inhibition of PDGF, TGF-β, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. J Hepatol, 2011, 55(3): 612-625.
|