| 1. |
彭勇, 王愛迪, 王婷婷, 等. 面向生物控制的鯉魚腦組織及腦電極三維重建. 生物醫學工程學雜志, 2020, 37(5): 885-891.
|
| 2. |
蘇學成, 槐瑞托, 楊俊卿, 等. 控制動物機器人運動行為的腦機制和控制方法. 中國科學: 信息科學, 2012, 42: 1130-1146.
|
| 3. |
Talwar S K, Xu S, Hawley E S, et al. Rat navigation guided by remote control. Nature, 2002, 417: 37-38.
|
| 4. |
張韶岷, 王鵬, 江君, 等. 大鼠遙控導航及其行為訓練系統的研究. 中國生物醫學工程學報, 2007, 26(6): 830-836.
|
| 5. |
Kim C H, Choi B, Kim D G, et al. Remote navigation of turtle by controlling instinct behaviour via human brain–computer interface. J Bionic Eng, 2016, 13(3): 491-503.
|
| 6. |
Ichi-Ribault S, Alcaraz J P, Boucher F, et al. Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta, 2018, 269: 360-366.
|
| 7. |
Kobayashi N, Yoshida M, Matsumoto N, et al. Artificial control of swimming in goldfish by brain stimulation: confirmation of the midbrain nuclei as the swimming center. Neurosci Lett, 2009, 452(1): 42-46.
|
| 8. |
Kim C, Ruberto T, Phamduy P, et al. Closed-loop control of zebrafish behaviour in three dimensions using a robotic stimulus. Sci Rep, 2018, 8(1): 657.
|
| 9. |
彭勇, 王婷婷, 閆艷紅, 等. 鯉魚機器人無線遙控系統設計與應用. 中國生物醫學工程學報, 2019, 38(4): 431-437.
|
| 10. |
Choo H Y, Li Y, Cao F, et al. Electrical stimulation of coleopteran muscle for initiating flight. PLoS ONE, 2016, 11(4): e0151808.
|
| 11. |
Griparic K, Haus T, Miklic D, et al. A robotic system for researching social integration in honeybees. PLoS ONE, 2017, 12(8): e0181977.
|
| 12. |
Wang H, Yang J Q, Lv C, et al. Intercollicular nucleus electric stimulation encoded “walk forward” commands in pigeons. Brill, 2018, 68(2): 213-225.
|
| 13. |
朱志堅, 王浩, 王文波, 等. 面向動物機器人的遙測遙控技術研究發展. 機械制造與自動化, 2013, 42(3): 151-154.
|
| 14. |
Seo J, Choi G J, Park S, et al. Wireless navigation of pigeons using polymer-based fully implantable stimulator: A pilot study using depth electrodes// IEEE Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Jeju Island: IEEE, 2017: 917-920.
|
| 15. |
Yang J, Huai R, Wang H, et al. Global positioning system-based stimulation for robo-pigeons in open space. Front Neurorobot, 2017, 11: 40.
|
| 16. |
Zhao K, Wan H, Shang Z, et al. Intracortical microstimulation parameters modulate flight behavior in pigeon. J Integr Neurosci, 2019, 18: 23-32.
|
| 17. |
Wang H, Li J J, Cai L, et al. Flight control of robo-pigeon using a neural stimulation algorithm. J Integr Neurosci, 2018, 17: 337-342.
|
| 18. |
Bozkurt A, Lobaton E, Sichitiu M. A biobotic distributed sensor network for under-rubble search and rescue. Computer, 2016, 49(5): 38-46.
|
| 19. |
Latif T, Whitmire E, Novak T, et al. Sound localization sensors for search and rescue biobots. IEEE Sens J, 2016, 16(10): 3444-3453.
|
| 20. |
Garnier S. From ants to robots and back: How robotics can contribute to the study of collective animal behaviour. Bio-inspired self-organizing robotic systems. Berlin: Springer, 2011.
|
| 21. |
Halloy J, Mondada F, Kernbach S, et al. Towards biohybrid systems made of social animals and robots. Biomimetic and biohybrid systems. Berlin: Springer, 2013.
|
| 22. |
Wang H, Wu J, Fang K, et al. Application of robo-pigeon in ethological studies of bird flocks. J Integr Neurosci, 2020, 19(3): 443-448.
|
| 23. |
葛寶明, 官天培, 諶利民, 等. GPS項圈系統在野生動物管理與監測中的應用. 四川動物, 2012, 31(2): 311-316.
|
| 24. |
楊正祥. 北斗與GPS的主要技術和性能比較分析. 電工技術, 2018(6): 99-100, 102.
|
| 25. |
蔡雷, 王浩, 王文波, 等. 鴿子慢性電刺激用電極轉接裝置及其固定方法. 動物學雜志, 2014, 49(2): 280-285.
|
| 26. |
Nagy M, Akos Z, Biro D, et al. Hierarchical group dynamics in pigeon flocks. Nature, 2010, 464: 890-893.
|
| 27. |
宋筆鋒, 稂鑫雨, 薛棟, 等. 鳥翼空氣動力學機理的研究現狀和進展綜述. 中國科學: 技術科學, 2022, 52(6): 893-910.
|
| 28. |
Lynch M, Mandadzhiev B, Wissa A. Bioinspired wingtip devices: A pathway to improve aerodynamic performance during low Reynolds number flight. Bioinspir Biomim, 2018, 13: 036003.
|
| 29. |
李耕, 狄增如, 韓戰鋼. 集群運動: 唯像描述與動力學機制. 復雜系統與復雜性科學, 2016, 13(2): 1-13.
|
| 30. |
Conradt L, Roper T J. Group decision-making in animals. Nature, 2003, 421: 155-158.
|