| 1. |
Heckmann N D, Steck T, Sporer S M, et al. Conforming polyethylene inserts in total knee arthroplasty: beyond the posterior-stabilized and cruciate-retaining debate. J Am Acad Orthop Surg, 2021, 29(22): 1097-1104.
|
| 2. |
Fitzpatrick C K, Clary C W, Cyr A J, et al. Mechanics of post-cam engagement during simulated dynamic activity. J Orthop Res, 2013, 31(9): 1438-1446.
|
| 3. |
Arnout N, Vanlommel L, Vanlommel J, et al. Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg Sports Traumatol Arthrosc, 2015, 23(11): 3343-3353.
|
| 4. |
Bourdon C E, Broberg J S, McCalden R W, et al. Comparison of long-term kinematics and wear of total knee arthroplasty implant designs. J Mech Behav Biomed Mater, 2021, 124(104845): 1-7.
|
| 5. |
Verra W C, van den Boom L G H, Jacobs W C H, et al. Similar outcome after retention or sacrifice of the posterior cruciate ligament in total knee arthroplasty. Acta Orthop, 2015, 86(2): 195-201.
|
| 6. |
Watanabe T, Koga H, Horie M, et al. Post-cam design and contact stress on tibial posts in posterior-stabilized total knee prostheses: comparison between a rounded and a squared design. J Arthroplasty, 2017, 32(12): 3757-3762.
|
| 7. |
Lachiewicz P F. How to treat a tibial post fracture in total knee arthroplasty? A systematic review. Clin Orthop Relat Res, 2011, 469(6): 1709-1715.
|
| 8. |
Gray H A, Guan S, Young T J, et al. Comparison of posterior-stabilized, cruciate-retaining, and medial-stabilized knee implant motion during gait. J Orthop Res, 2020, 38(8): 1753-1768.
|
| 9. |
Abdel M P, Morrey M E, Jensen M R, et al. Increased long-term survival of posterior cruciate-retaining versus posterior cruciate-stabilizing total knee replacements. J Bone Joint Surg Am, 2011, 93(22): 2072-2078.
|
| 10. |
Vertullo C J, Lewis P L, Lorimer M, et al. The effect on long-term survivorship of surgeon preference for posterior-stabilized or minimally stabilized total knee replacement: an analysis of 63,416 prostheses from the Australian Orthopaedic Association National Joint Replacement Registry. J Bone Joint Surg Am, 2017, 99(13): 1129-1139.
|
| 11. |
Belvedere C, Leardini A, Catani F, et al. In vivo kinematics of knee replacement during daily living activities: condylar and post-cam contact assessment by three-dimensional fluoroscopy and finite element analyses. J Orthop Res, 2017, 35(7): 1396-1403.
|
| 12. |
Watanabe T, Muneta T, Koga H, et al. In-vivo kinematics of high-flex posterior-stabilized total knee prosthesis designed for Asian populations. Int Orthop, 2016, 40(11): 2295-2302.
|
| 13. |
Fallahiarezoodar A, Abdul Kadir M R, Alizadeh M, et al. Geometric variable designs of cam/post mechanisms influence the kinematics of knee implants. Knee Surg Sports Traumatol Arthrosc, 2014, 22(12): 3019-3027.
|
| 14. |
Tsumori Y, Yoshiya S, Kurosaka M, et al. Analysis of weight-bearing kinematics of posterior-stabilized total knee arthroplasty with novel helical post-cam design. J Arthroplasty, 2011, 26(8): 1556-1561.
|
| 15. |
Kim M S, Kim J H, Koh I J, et al. Is high-flexion total knee arthroplasty a valid concept? Bilateral comparison with standard total knee arthroplasty. J Arthroplasty, 2016, 31(4): 802-808.
|
| 16. |
Shimizu N, Tomita T, Yamazaki T, et al. The effect of weight-bearing condition on kinematics of a high-flexion, posterior-stabilized knee prosthesis. J Arthroplasty, 2011, 26(7): 1031-1037.
|
| 17. |
石小軍, 林江莉, 沈彬, 等. 固定平臺后穩定型假體全膝關節置換術后的運動學研究. 中華骨科雜志, 2013, 33(3): 259-265.
|
| 18. |
Huang C H, Liau J J, Huang C H, et al. Influence of post-cam design on stresses on posterior-stabilized tibial posts. Clin Orthop Relat Res, 2006, 450: 150-156.
|
| 19. |
郭建嶠, 王言冰, 田強, 等. 人體骨肌的多柔體系統動力學研究進展. 力學進展, 2022, 52: 1.
|
| 20. |
Shetty G, Khairkar S. Loading on Attune? fixed-bearing cruciate-substituting total knee implant in knee malalignment during activities of daily living: a finite element analysis. J Orthop, 2021, 26: 36-41.
|
| 21. |
Mizu-Uchi H, Colwell C W, Flores-Hernandez C, et al. Patient-specific computer model of dynamic squatting after total knee arthroplasty. J Arthroplasty, 2015, 30(5): 870-874.
|
| 22. |
Smith C R, Vignos M F, Lenhart R L, et al. The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement. J Biomech Eng, 2016, 138(2): 021017.
|
| 23. |
Kia M, Stylianou A P, Guess T M. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials. Med Eng Phys, 2014, 36(3): 335-344.
|
| 24. |
Kebbach M, Darowski M, Krueger S, et al. Musculoskeletal multibody simulation analysis on the impact of patellar component design and positioning on joint dynamics after unconstrained total knee arthroplasty. Materials (Basel), 2020, 13(10): 2365.
|
| 25. |
Marra M A, Vanheule V, Fluit R, et al. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J Biomech Eng, 2015, 137(2): 020904.
|
| 26. |
Chen Z, Zhang Z, Wang L, et al. Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty. Med Eng Phys, 2016, 38(8): 708-716.
|
| 27. |
李宏偉, 劉峰. 個體化全膝關節置換骨肌多體動力學模型的適用性評估. 機械設計與制造工程, 2021, 50(5): 6-10.
|
| 28. |
崔偉玲, 陳維毅, 王長江, 等. 基于nmsBuilder和OpenSim建立個性化骨肌模型及其驗證. 醫用生物力學, 2019, 34(6): 608-614.
|
| 29. |
劉佳耕, 閆松華, 曾紀洲, 等. 全膝關節置換前后患者下肢骨肌模型步態模擬與分析. 醫用生物力學, 2020, 35(3): 347-355.
|
| 30. |
Horsman K, Koopman H, Van der Helm F, et al. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech, 2007, 22(2): 239-247.
|
| 31. |
Ali N, Andersen M S, Rasmussen J, et al. The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings. Comput Methods Biomech Biomed Engin, 2014, 17(14): 1602-1616.
|
| 32. |
Holmberg L J, Klarbring A. Muscle decomposition and recruitment criteria influence muscle force estimates. Multibody Syst Dyn, 2012, 28(3): 283-289.
|
| 33. |
Chen Z, Zhang X, Ardestani M M, et al. Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts. Proc Inst Mech Eng H, 2014, 228(6): 564-575.
|
| 34. |
Blankevoort L, Kuiper J, Huiskes R, et al. Articular contact in a three-dimensional model of the knee. J Biomech, 1991, 24(11): 1019-1031.
|
| 35. |
Akasaki Y, Matsuda S, Shimoto T, et al. Contact stress analysis of the conforming post-cam mechanism in posterior-stabilized total knee arthroplasty. J Arthroplasty, 2008, 23(5): 736-743.
|
| 36. |
Koh Y G, Son J, Kwon O R, et al. Tibiofemoral conformity variation offers changed kinematics and wear performance of customized posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1213-1223.
|
| 37. |
Lin K-J, Huang C-H, Liu Y-L, et al. Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion. Clin Biomech, 2011, 26(8): 847-852.
|
| 38. |
Hamai S, Okazaki K, Shimoto T, et al. Continuous sagittal radiological evaluation of stair-climbing in cruciate-retaining and posterior-stabilized total knee arthroplasties using image-matching techniques. J Arthroplasty, 2015, 30(5): 864-869.
|
| 39. |
Schutz P, Postolka B, Gerber H, et al. Knee implant kinematics are task-dependent. J R Soc Interface, 2019, 16(151): 20180678.
|