| 1. |
Khalaf M E, Alomari Q D, Omar R. Factors relating to usage patterns of amalgam and resin composite for posterior restorations-a prospective analysis. J Dent, 2014, 42(7): 785-792.
|
| 2. |
毛馭川, 張璐斯, 陳紅艷, 等. 抗菌劑用于牙科復合樹脂的研究進展. 材料科學與工藝, 2021, 29(2): 1-19.
|
| 3. |
Nedeljkovic I, de Munck J, Vanloy A, et al. Secondary caries: prevalence, characteristics, and approach. Clin Oral Investig, 2020, 24(2): 683-691.
|
| 4. |
Boaro L C, Campos L M, Varca G C, et al. Antibacterial resin-based composite containing chlorhexidine for dental applications. Dent Mater, 2019, 35(6): 909-918.
|
| 5. |
Beyth N, Farah S, Domb A J, et al. Antibacterial dental resin composites. React Funct Polym, 2014, 75: 81-88.
|
| 6. |
周澤瑛, 張靜月, 牛菊, 等. 牙科樹脂材料抗菌性能的研究進展. 口腔疾病防治, 2021, 29(9): 638-643.
|
| 7. |
Ilie N, Hilton T J, Heintze S D, et al. Academy of dental materials guidance-resin composites: part I-mechanical properties. Dent Mater, 2017, 33(8): 880-894.
|
| 8. |
Sun J, Watson S S, Allsopp D, et al. Tuning photo-catalytic activities of TiO2 nanoparticles using dimethacrylate resins. Dent Mater, 2016, 32(3): 363-372.
|
| 9. |
Raorane D V, Chaughule R S, Pednekar S R, et al. Experimental synthesis of size-controlled TiO2 nanofillers and their possible use as composites in restorative dentistry. Saudi Dent J, 2019, 31(2): 194-203.
|
| 10. |
Dias H B, Bernardi M B, Bauab T M, et al. Titanium dioxide and modified titanium dioxide by silver nanoparticles as an antibiofilm filler content for composite resins. Dent Mater, 2019, 35(2): 36-46.
|
| 11. |
Shi Y Y, Sun B, Zhou Z, et al. Size-controlled and large-scale synthesis of organic-soluble Ag nanocrystals in water and their formation mechanism. Progress in Natural Science, 2011, 21(6): 447-454.
|
| 12. |
董偉, 廖麗斐. 納米銀系抗菌劑在口腔粘接材料中的應用現狀及展望. 粘接, 2021, 46(6): 68-71.
|
| 13. |
Wang J, Zhang C, Yang Y, et al. Poly (vinyl alcohol)(PVA) hydrogel incorporated with Ag/TiO2 for rapid sterilization by photoinspired radical oxygen species and promotion of wound healing. Appl Surf Sci, 2019, 494: 708-720.
|
| 14. |
Esteban F L, Hiers R D, Larson P, et al. Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles. Mater Sci Eng C Mater Biol Appl, 2018, 93: 931-943.
|
| 15. |
Sun J, Petersen E J, Watson S S, et al. Biophysical characterization of functionalized Titania nanoparticles and their application in dental adhesives. Acta Biomater, 2017, 53: 585-597.
|
| 16. |
Dias H B, Bernardi M I B, Marangoni V S, et al. Synthesis, characterization and application of Ag doped ZnO nanoparticles in a composite resin. Mater Sci Eng C Mater Biol Appl, 2019, 96: 391-401.
|
| 17. |
Chambers C, Stewart S B, Su B, et al. Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers. Dent Mater, 2017, 33(3): e115-e123.
|
| 18. |
國家食品藥品監督管理局. YY 1042-2011牙科學 聚合物基修復材料. 北京: 質檢出版社, 2011.
|
| 19. |
Yang G, Yin H, Liu W, et al. Synergistic Ag/TiO2-N photocatalytic system and its enhanced antibacterial activity towards acinetobacter baumannii. Appl Catal B-Environ, 2018, 224: 175-182.
|
| 20. |
Saravanan R, Manoj D, Qin J, et al. Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Process Saf Environ, 2018, 120: 339-347.
|
| 21. |
Gumy D, Morais C, Bowen P, et al. Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Applied Catalysis B-Environmental, 2006, 63(1-2): 76-84.
|
| 22. |
Liao H, Andersson A S, Sutherland D, et al. Response of rat osteoblast-like cells to microstructured model surfaces in vitro. Biomaterials, 2003, 24(4): 649-654.
|
| 23. |
Samuel S P, Li S, Mukherjee I, et al. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent Mater, 2009, 25(3): 296-301.
|
| 24. |
Bai X, Lin C, Wang Y, et al. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent Mater, 2020, 36(6): 794-807.
|
| 25. |
Feng Z, Liu X, Tan L, et al. Electrophoretic deposited stable chitosan@MoS(2) coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small, 2018, 14(21): e1704347.
|
| 26. |
Deepagan V G, You D G, Um W, et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett, 2016, 16(10): 6257-6264.
|
| 27. |
Zhang X, Zhang G, Zhang H, et al. A bifunctional hydrogel incorporated with CuS@MoS2 microspheres for disinfection and improved wound healing. Chem Engineer J, 2020, 382: 122849.
|
| 28. |
Zhang Guannan, Yang Yongqiang, Shi Jing, et al. Near-infrared light II-assisted rapid biofilm elimination platform for bone implants at mild temperature. Biomaterials, 2021, 269: 120634.
|
| 29. |
Mao C, Xiang Y, Liu X, et al. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano, 2017, 11(9): 9010-9021.
|
| 30. |
Tan L, Li J, Liu X, et al. In situ disinfection through photoinspired radical oxygen species storage and thermal-triggered release from black phosphorous with strengthened chemical stability. Small, 2018: 1703197.
|
| 31. |
Zhang X, Li M, He X, et al. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays. Appl Surf Sci, 2016, 372: 139-144.
|
| 32. |
Zhang L, Guo J, Huang X, et al. The dual function of Cu-doped TiO(2) coatings on titanium for application in percutaneous implants. J Mater Chem B, 2016, 4(21): 3788-3800.
|
| 33. |
Gao A, Hang R, Huang X, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials, 2014, 35(13): 4223-4235.
|
| 34. |
Cheng H, Wang J, Yang Y, et al. Ti3C2TX MXene modified with ZnTCPP with bacteria capturing capability and enhanced visible light photocatalytic antibacterial activity. Small, 2022: 2200857.
|