| 1. |
吳琪, 朱建非, 席文明. 人工全髖關節置換假體設計的新思路. 醫藥與保健, 2014(12): 18-19.
|
| 2. |
Mangesh D, Abhaykumar K. Effect of geometric parameters in the design of customized hip implants. J Med Eng Technol, 2017, 41(6): 429-436.
|
| 3. |
陳夕輝, 柴偉, 高永昌, 等. DDH患者全髖關節置換中股骨偏心距對骨肌多體動力學和接觸力學的影響. 醫用生物力學, 2019, 34(3): 225-231.
|
| 4. |
Luo C Q, Wu X D, Wan Y F, et al. Femoral stress changes after total hip arthroplasty with the ribbed prosthesis: A Finite Element Analysis. Biomed Res Int, 2020, 2020(8): 1-8.
|
| 5. |
俞穎豪, 趙繼軍, 劉冬鋮, 等. 數字圖像術前規劃輔助單髁置換對固定平臺假體擺位的臨床指導意義. 中國組織工程研究, 2021, 25(21): 3324-3331.
|
| 6. |
彭小星, 趙剛, 吳琳琳. CT 和 X 線診斷老年股骨頭壞死的臨床價值. 中國老年學雜志, 2018, 38(13): 3183-3185.
|
| 7. |
Markelj P, Toma?evi? D, Likar B, et al. A review of 3D/2D registration methods for image-guided interventions. Med Image Anal, 2012, 16(3): 642-661.
|
| 8. |
Pietro C, Costanza S, Gianluca O, et al. 2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: A feasibility analysis. Int J Med Robot, 2017, 13(4): e1832.
|
| 9. |
Antonio M, Carlo R, Yary V, et al. Statistical Shape Model: comparison between ICP and CPD algorithms on medical applications. IJIDeM, 2021, 15(1): 85-89.
|
| 10. |
Shui W Y, Zhou M Q, Steve M, et al. A computerized craniofacial reconstruction method for an unidentified skull based on statistical shape models. Multimed Tools APPL, 2020, 79(35-36): 25589-25611.
|
| 11. |
Fahad P M, Tomoyuki M, Hiroshi T, et al. Construction of 3-D humeral head statistical shape model in CT images. Appl Sci, 2020, 10(16): 5591.
|
| 12. |
Meynen A, Matthews H, Nauwelaers N, et al. Accurate reconstructions of pelvic defects and discontinuities using statistical shape models. Comput Methods Biomech Biomed Engin, 2020, 23(13): 1026-1033.
|
| 13. |
Asvadi A, Dardenne G, Troccaz J, et al. Bone surface reconstruction and clinical features estimation from sparse landmarks and statistical shape models: A feasibility study on the femur. Med Eng Phys, 2021, 2021(95): 30-38.
|
| 14. |
Daniel N, Ko S T, Anthony M J, et al. Reconstruction of the lower limb bones from digitised anatomical landmarks using statistical shape modelling. Gait Posture, 2020, 77(6): 269-275.
|
| 15. |
Keating T C, Leong N, Beck E C, et al. Evaluation of statistical shape modeling in quantifying femoral morphologic differences between symptomatic and nonsymptomatic hips in patients with unilateral femoroacetabular impingement syndrome. Arthrosc Sports Med Rehabil, 2020, 2(2): e91-e95.
|
| 16. |
Allison L C, Colin R S, Michael F V, et al. The effect of articular geometry features identified using statistical shape modelling on knee biomechanics. Med Eng Phys, 2019, 66: 47-55.
|
| 17. |
Chandreshwar R, Clare K F, Paul J R, et al. A statistical finite element model of the knee accounting for shape and alignment variability. Med Eng Phys, 2013, 35(10): 1450-1456.
|
| 18. |
Barratt D C, Chan C S K, Edwards P J, et al. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging. Med Image Anal, 2008, 12(3): 358-374.
|
| 19. |
Grant T M, Diamond L E, Pizzolato C, et al. Development and validation of statistical shape models of the primary functional bone segments of the foot. PeerJ, 2020, 8: e8397.
|
| 20. |
Schumann S, Tannast M, Nolte Lutz P, et al. Validation of statistical shape model based reconstruction of the proximal femur-A morphology study. Med Eng Phys, 2010, 32(6): 638-644.
|
| 21. |
Sarkalkan N, Weinans H, Zadpoor A A. Statistical shape and appearance models of bones. Bone, 2014, 60: 129-140.
|
| 22. |
Perronne L, Haehnel O, Chevret S, et al. How is quality of life after total hip replacement related to the reconstructed anatomy? A study with low-dose stereoradiography. Diagn Interv Imaging, 2021, 102(2): 101-107.
|
| 23. |
DE P E, Atzory F, Ferguson S J, et al. Contact force path in total hip arthroplasty: effect of cup medialisation in a whole-body simulation. Hip Int, 2021, 31(5): 624-631.
|
| 24. |
Birnbaum K, Prescher A, Niethard F U. Hip centralizing forces of the iliotibial tract within various femoral neck angle. J Pediatr Orthop B, 2010, 19(2): 140-149.
|
| 25. |
Duncan J S, Gerig G, Tang T S Y, et al. 2D/3D deformable registration using a hybrid atlas. Med Image Comput Comput Assist Interv, 2005, 8(2): 223-230.
|
| 26. |
Shiode R, Kabashima M, Hiasa Y, et al. 2D-3D reconstruction of distal forearm bone from actual X-ray images of the wrist using convolutional neural networks. Sci Rep, 2021, 11(1): 1-12.
|
| 27. |
Chaibi Y, Cresson T, Aubert B, et al. Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin, 2012, 15(5): 457-466.
|
| 28. |
Zheng G Y, Lutz P N, Stephen J F. Scaled, patient-specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy. Int J Comput Assist Radiol Surg, 2011, 6(3): 351-366.
|
| 29. |
Baka N, Kaptein B L, Bruijne M, et al. 2D–3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Med Image Anal, 2011, 15(6): 840-850.
|
| 30. |
Said B, Max M, Stefan P, et al. 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph, 2003, 27(5): 321-337.
|
| 31. |
Yu W M, Chu C W, Moritz T, et al. Fully automatic reconstruction of personalized 3D volumes of the proximal femur from 2D X-ray images. Int J Comput Assist Radiol Surg, 2016, 11(9): 1673-1685.
|
| 32. |
Shun M, Wang Z J, Rui L. A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging, 2016, 35(5): 1352-1363.
|
| 33. |
Yang Y M, Rueckert D, Bull A M J. Predicting the shapes of bones at a joint: application to the shoulder. Comput Methods Biomech Biomed Engin, 2008, 11(1): 19-30.
|
| 34. |
Jürgen D, Thomas G, Marcel L, et al. Error-controlled model approximation for Gaussian process morphable models. J Math Imaging Vis, 2019, 61(4): 443-457.
|
| 35. |
Larsen R, Nielsen M, Sporring J, et al. Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and point distribution model. Med Image Comput Comput Assist Interv, 2006, 9(1): 25-32.
|
| 36. |
Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell, 1992, 14(2): 239-256.
|
| 37. |
王賓, 劉林, 侯榆青, 等. 應用改進迭代最近點方法的三維心臟點云配準. 光學精密工程, 2020, 28(2): 474-484.
|
| 38. |
Jie B, Han B, Yao B, et al. Automatic virtual reconstruction of maxillofacial bone defects assisted by ICP (iterative closest point) algorithm and normal people database. Clin Oral Investig, 2021, 25(9): 1-10.
|
| 39. |
崔琪. 一種基于K_D tree迭代的股骨骨折碎片復位方法. 哈爾濱: 哈爾濱理工大學, 2021.
|
| 40. |
Luthi M, Gerig T, Jud C, et al. Gaussian process morphable models. IEEE Trans Pattern Anal Mach Intell, 2018, 40(8): 1860-1873.
|
| 41. |
Pollock D S G. Wiener-Kolmogorov filtering, frequency-selective filtering, and polynomial regression. Economet Theor, 2007, 23(1): 71-88.
|