| 1. | Sannino G, De Pietro G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Generation Computer Systems, 2018, 86: 446-455. | 
				                                                        
				                                                            
				                                                                | 2. | Kumar A, Komaragiri R, Kumar M. From pacemaker to wearable: techniques for ECG detection systems. J Med Syst, 2018, 42(2): 34. | 
				                                                        
				                                                            
				                                                                | 3. | Rajpurkar P, Hannun A Y, Haghpanahi M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv: Computer Vision and Pattern Recognition, 2017, arXiv: 1707.01836. | 
				                                                        
				                                                            
				                                                                | 4. | Sangaiah A K, Arumugam M, Bian G B. An intelligent learning approach for improving ECG signal classification and arrhythmia analysis. Artif Intell Med, 2020, 103: 101788. | 
				                                                        
				                                                            
				                                                                | 5. | Wu Q, Sun Y F, Yan H, et al. ECG signal classification with binarized convolutional neural network. Comput Biol Med, 2020, 121: 103800. | 
				                                                        
				                                                            
				                                                                | 6. | Dutta S, Chatterjee A, Munshi S. Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification. Med Eng Phys, 2010, 32(10): 1161-1169. | 
				                                                        
				                                                            
				                                                                | 7. | Li T, Min Z. ECG classification using wavelet packet entropy and random forests. Entropy, 2016, 18(8): 285. | 
				                                                        
				                                                            
				                                                                | 8. | Moody G A, Mark R G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50. | 
				                                                        
				                                                            
				                                                                | 9. | Mondéjar-Guerra V, Novo J, Rouco J, et al. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomedical Signal Processing and Control, 2019, 47: 41-48. | 
				                                                        
				                                                            
				                                                                | 10. | 行鴻彥, 黃敏松. 心電信號特征點提取的算法研究. 儀器儀表學報, 2008, 29(11): 2362-2366. | 
				                                                        
				                                                            
				                                                                | 11. | 陳志博, 李健, 李智, 等. 基于RR間期和多特征值的房顫自動檢測分類. 生物醫學工程學雜志, 2018, 35(4): 550-556. | 
				                                                        
				                                                            
				                                                                | 12. | Khatibi T, Rabinezhadsadatmahaleh N. Proposing feature engineering method based on deep learning and K-NNs for ECG beat classification and arrhythmia detection. Phys Eng Sci Med, 2020, 43(1): 49-68. | 
				                                                        
				                                                            
				                                                                | 13. | 李端, 張洪欣, 劉知青, 等. 基于深度殘差卷積神經網絡的心電信號心律不齊識別. 生物醫學工程學雜志, 2019, 36(2): 189-198. | 
				                                                        
				                                                            
				                                                                | 14. | Mathews S M, Kambhamettu C, Barner K. A novel application of deep learning for single-lead ECG classification. Comput Biol Med, 2018, 99: 53-62. | 
				                                                        
				                                                            
				                                                                | 15. | 劉光達, 周葛, 董夢坤, 等. 基于FFNN和1D-CNN的實時心律失常診斷系統與算法. 電子測量與儀器學報, 2021, 35(3): 35-42. | 
				                                                        
				                                                            
				                                                                | 16. | Xiao Q, Cai W J, Ge D F. ECG signal classification based on BPNN//2011 International Conference on Electric Information and Control Engineering. 2011, 2011: 1362-1364. | 
				                                                        
				                                                            
				                                                                | 17. | Li H, Yuan D, Ma X, et al. Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci Rep, 2017, 7: 41011. | 
				                                                        
				                                                            
				                                                                | 18. | Moniz J R A, Krueger D. Nested LSTMs. arXiv: Computation and Language, 2018, arXiv: 1801.10308. | 
				                                                        
				                                                            
				                                                                | 19. | Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell, 2020, 42(2): 318-327. | 
				                                                        
				                                                            
				                                                                | 20. | Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. | 
				                                                        
				                                                            
				                                                                | 21. | Balachandran A, Ganesan M, Sumesh E P. Daubechies algorithm for highly accurate ECG feature extraction//2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), IEEE, 2014: 1-5. | 
				                                                        
				                                                            
				                                                                | 22. | Acharya U R, Suri J S, Spaan J, et al. Wavelets and its application in cardiology. Springer Berlin Heidelberg, 2007, 2007(Chapter 18): 407-422. | 
				                                                        
				                                                            
				                                                                | 23. | Rai H M, Trivedi A, Shukla S, et al. ECG arrhythmia classification using daubechies wavelet and radial basis function neural network//2012 Nirma University International Conference on Engineering (NUiCONE), IEEE, 2012: 1-6. | 
				                                                        
				                                                            
				                                                                | 24. | Pan J, Tompkins W J. A real-time QRS detection algorithm. IEEE Trans Biomed Eng, 1985(3): 230-236. | 
				                                                        
				                                                            
				                                                                | 25. | Wang Yequan, Huang Minlie, Zhao Li, et al. Attention-based LSTM for aspect-level sentiment classification// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2016: 606-615. | 
				                                                        
				                                                            
				                                                                | 26. | Laina I, Rupprecht C, Belagiannis V, et al. Deeper depth prediction with fully convolutional residual networks//2016 Fourth International Conference on 3D Vision (3DV), IEEE, 2016: 239-248. | 
				                                                        
				                                                            
				                                                                | 27. | Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. | 
				                                                        
				                                                            
				                                                                | 28. | Acharya U R, Oh S L, Hagiwara Y, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med, 2017, 89: 389-396. |