| 1. |
湯緯地. 基于表面肌電的上肢運動分析關健技術研究. 合肥: 中國科學技術大學, 2021.
|
| 2. |
張政委. 基于表面肌電的短視頻用戶上肢肌肉疲勞特性研究. 天津: 天津科技大學, 2020.
|
| 3. |
劉彬. 基于肌肉疲勞屬性的個體最大耐久時間建模與實驗研究. 北京: 清華大學, 2018.
|
| 4. |
Matsumoto T, Ito K, Moritani T. The relationship between anaerobic threshold and electromyographic fatigue threshold in college-women. European Journal of Applied Physiology and Occupational Physiology, 1991, 63(1): 1-5.
|
| 5. |
Kang S K, Kim J, Kwon M, et al. Objectivity and validity of EMG method in estimating anaerobic threshold. Int J Sports Med, 2014, 35(9): 737-742.
|
| 6. |
王琳, 付榮榮, 張陳, 等. 基于生物力學分析Q值對頸肌疲勞的反映效果. 儀器儀表學報, 2017, 38(4): 878-885.
|
| 7. |
劉曉光, 李夢楠, 王立玲, 等. 基于表面肌電信號的康復過程中肌疲勞有效性分析. 生物醫學工程學雜志, 2019, 36(1): 80-84, 100.
|
| 8. |
李成程. 基于sEMG的不同負載下手腕角度預測研究. 武漢:武漢科技大學, 2020.
|
| 9. |
劉春波. 人體解剖生理學. 北京: 人民衛生出版社, 2010: 89-103.
|
| 10. |
趙文華, 叢琳. 體力活動劃分: 不同類型體力活動的代謝體力活動劃分: 不同類型體力活動的代謝. 衛生研究, 2004, 33(2): 246-249.
|
| 11. |
Yan A F, Voorhees C C, Beck K H, et al. A social ecological assessment of physical activity among urban adolescents. Am J Health Behav, 2014, 38(3): 379-391.
|
| 12. |
Lewis Z H, Markides K S, Ottenbacher K J, et al. The role of physical activity and physical function on the risk of falls in older Mexican americans. J Aging Phys Act, 2016, 24(3): 342-349.
|
| 13. |
李玉章. 表面肌電在體育中的應用. 上海: 復旦大學出版社, 2015: 275.
|
| 14. |
郭伏, 人因工程學[M]. 北京: 機械工業出版社, 2005: 125-165.
|
| 15. |
Promsri A, Mohr M, Federolf P. Principal postural acceleration and myoelectric activity: Interrelationship and relevance for characterizing neuromuscular function in postural control. Hum Mov Sci, 2021, 77(5): 102792.
|
| 16. |
Li L. Mirror motion recognition method about upper limb rehabilitation robot based on sEMG. Journal of Computational Methods in Sciences and Engineering, 2021, 21(4): 1021-1029.
|
| 17. |
Li K, Zhang J, Wang L, et al. A review of the key technologies for sEMG-based human-robot interaction systems. Biomedical Signal Processing and Control, 2020, 62: 1145-1169.
|
| 18. |
Luo G F, Chang C M, Shih Y F. The effects of muscle fatigue on scapulothoracic joint position sense and neuromuscular performance. Musculoskelet Sci Pract, 2021, 56: 102461.
|
| 19. |
Akizuki K, Yazaki S, Echizenya Y, et al. Anaerobic threshold and salivary α-amylase during incremental exercise. The Society of Physical Therapy Science, 2014, 26(7): 1059-1063.
|
| 20. |
Al Harrach M, Afsharipour B, Boudaoud S, et al. Extraction of the brachialis muscle activity using HD-sEMG technique and canonical correlation analysis. Annu Int Conf IEEE Eng Med Biol Soc, 2016, 2016: 2378-2381.
|
| 21. |
張冰, 楊錫讓, 練碧貞, 等. 臨界負荷、肌電圖疲勞閾值與無氧閾值的關系研究. 體育科學, 1995, 1995(6): 57-60.
|
| 22. |
趙琦. 體能訓練理論與方法. 南京: 東南大學出版社, 2017: 263.
|
| 23. |
Guo Q H, Maggi K. Interpretation of scale in paired quadrat variance methods. Journal of Vegetation Science, 2004, 15(6): 763-770.
|
| 24. |
Wei P F, Lu Z Z, Ruan W B, et al. Regional sensitivity analysis using revised mean and variance ratio functions. Reliability Engineering and System Safety, 2014, 121: 121-135.
|
| 25. |
Valentin S, Zsoldos R R. Surface electromyography in animal biomechanics: a systematic review. J Electromyogr Kinesiol, 2016, 28: 167-183.
|
| 26. |
De Nooij R, Kallenberg L A, Hermens H J. Evaluating the effect of electrode location on surface EMG amplitude of the m. erector spinae p. longissimus dorsi. Journal of Electromyography and Kinesiology, 2009, 19(4): e257-e266.
|
| 27. |
Kiran M, Ramakrishnan S. Classification of muscle fatigue in dynamic contraction using surface electromyography signals and multifractal singularity spectral analysis. J Dyn Syst Meas Control, 2016, 138(11): 138-149.
|
| 28. |
Rodriguez-Falces J, Izquierdo M, González-Izal M, et al. Comparison of the power spectral changes of the voluntary surface electromyogram and M wave during intermittent maximal voluntary contractions. Eur J Appl Physiol, 2014, 114(9): 1943-1954.
|
| 29. |
Kahl L, Hofmann U G. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals. Med Eng Phys, 2016, 38(11): 1260-1269.
|
| 30. |
Shi J, Cai Y, Zhu J, et al. SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine. Med Biol Eng Comput, 2013, 51(4): 417-427.
|
| 31. |
Wang Lejun, Wang Yuting, Ma Aidi, et al. A comparative study of EMG indices in muscle fatigue evaluation based on grey relational analysis during all-out cycling exercise. Biomed Res Int, 2018, 2018: 9341215.
|