| 1. | 金洋, 張瑋, 徐斌等. 發作期頭皮電極腦電圖在局灶性癲癇診斷中的價值. 癲癇雜志, 2019, 5(6): 431-439. | 
				                                                        
				                                                            
				                                                                | 2. | 楊雨時, 姚麗芬. 癲癇患者的社會認知功能: 現狀與展望. 腦與神經疾病雜志, 2021, 29(7): 450-453. | 
				                                                        
				                                                            
				                                                                | 3. | 顏因, 彭曉燕, 王學峰. 癲癇發作后精神病的研究現狀. 西南醫科大學學報, 2021, 44(5): 425-428. | 
				                                                        
				                                                            
				                                                                | 4. | 劉曉燕. 臨床腦電圖學. 第2版. 北京: 人民衛生出版社, 2018: 12-33. | 
				                                                        
				                                                            
				                                                                | 5. | Wang C, Zou J Z, Zhang J, et al. Recognition of epileptic EEG using support vector machines// Wang R, Gu F. Advances in Cognitive Neurodynamics (II). Dordrecht: Springer, 2009: 653-657. | 
				                                                        
				                                                            
				                                                                | 6. | Chen W, Shen C P, Chiu M J, et al. Epileptic EEG visualization and sonification based on linear discriminate analysis// 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan: IEEE, 2015: 4466-4469. | 
				                                                        
				                                                            
				                                                                | 7. | Sharmila A, Geethanjali P. Epileptic seizure detection from EEG signals using best feature subsets based on estimation of mutual information for support vector machines and naive bayes classifiers// International Conference on Emerging Trends and Advances in Electrical Engineering and Renewable Energy (ETAEERE). Majhitar: Sikkim Manipal Inst Technol, 2016: 585-593. | 
				                                                        
				                                                            
				                                                                | 8. | Rajaguru H, Prabhakar S K. Non linear ICA and logistic regression for classification of epilepsy from EEG signals// International conference of Electronics, Communication and Aerospace Technology (ICECA). Coimbatore: IEEE, 2017: 577-580. | 
				                                                        
				                                                            
				                                                                | 9. | Mursalin M, Zhang Y, Chen Y H, et al. Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neu Comp, 2017, 241: 204-214. | 
				                                                        
				                                                            
				                                                                | 10. | Takahashi R, Matsubara T, Uehara K. Data augmentation using random image cropping and patching for deep CNNs. IEEE Trans Circuits Syst Video Technol, 2020, 30(9): 2917-2931. | 
				                                                        
				                                                            
				                                                                | 11. | 王芋人, 武德安. 一種提高小目標檢測準確率的數據增強方法. 激光雜志, 2021, 42(11): 41-45. | 
				                                                        
				                                                            
				                                                                | 12. | Wang F, Zhong S H, Peng J F, et al. Data augmentation for EEG-based emotion recognition with deep convolutional neural networks// 24th International Conference on MultiMedia Modeling(MMM). Bangkok: Chulalongkorn Univ, 2018, 10705: 82-93. | 
				                                                        
				                                                            
				                                                                | 13. | Fahimi F, Dosen S, Ang K K, et al. Generative adversarial networks-based data augmentation for brain-computer interface. IEEE Trans Neural Netw Learn Syst, 2020, 32(9): 4039-4051. | 
				                                                        
				                                                            
				                                                                | 14. | Krell M M, Kim S K. Rotational data augmentation for electroencephalographic data. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 471-474. | 
				                                                        
				                                                            
				                                                                | 15. | Wei Z, Zou J Z, Zhang J, et al. Automatic epileptic EEG detection using convolutional neural network with improvements in time-domain. Biomedical Signal Process Control, 2019, 53: 101551. | 
				                                                        
				                                                            
				                                                                | 16. | Zhang B C, Wang W N, Xiao Y T, et al. Cross-subject seizure detection in EEGs using deep transfer learning. Comput Math Methods Med, 2020, 2020: 7902072. | 
				                                                        
				                                                            
				                                                                | 17. | Jiang Y Z, Wu D R, Deng Z H, et al. Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system. IEEE Trans Neu Syst Reh Eng, 2017, 25(12): 2270-2284. | 
				                                                        
				                                                            
				                                                                | 18. | Sola J, Sevilla J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans Nuc Sci, 1997, 44(3): 1464-1468. | 
				                                                        
				                                                            
				                                                                | 19. | 王敏會, 常桂娟. 基于小波方法的時頻域分析. 青島農業大學學報, 2021, 38(3): 229-233. | 
				                                                        
				                                                            
				                                                                | 20. | Akyol K. Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection. Exp Syst Appl, 2020, 148: 113239. | 
				                                                        
				                                                            
				                                                                | 21. | 楊澤鑫. 深度集成分類模型在癲癇腦電預測中的應用研究. 太原: 太原理工大學, 2020. | 
				                                                        
				                                                            
				                                                                | 22. | Goldberger A L, Amaral L A N, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): E215-E220. | 
				                                                        
				                                                            
				                                                                | 23. | Yao X, Chen Q, Zhang G Q. Automated classification of seizures against nonseizures: A deep learning approach. arXiv, 2019: 1906.0274. | 
				                                                        
				                                                            
				                                                                | 24. | Huang C B, Chen W T, Cao G T. Automatic epileptic seizure detection via attention-based CNN-BiRNN// IEEE International Conference on Bioinformatics and Biomedicine (BIBM). San Diego: IEEE, 2019: 660-663. | 
				                                                        
				                                                            
				                                                                | 25. | Yao X H, Li X J, Ye Q, et al. A robust deep learning approach for automatic classification of seizures against non-seizures. Bio Sig Proc Cont, 2021, 64: 102215. |