| 1. |
謝平, 宋妍, 蘇崇欽, 等. 腦卒中患者表面肌電信號與痙攣性肌張力關系分析. 生物醫學工程學雜志, 2015, 32(4): 795-801.
|
| 2. |
舒智林, 李思宜, 于寧波, 等. 一種腦肢融合的神經康復訓練在線評價與調整方法. 自動化學報, 2021, 47: 1-11.
|
| 3. |
Baker S N. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol, 2007, 17(6): 649-655.
|
| 4. |
Salenius S, Hari R. Synchronous cortical oscillatory activity during motor action. Curr Opin Neurobiol, 2003, 13(6): 678-684.
|
| 5. |
Conway B, Halliday D M, Farmer S F, et al. Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol, 1995, 489: 917-924.
|
| 6. |
Gwin J T, Ferris D P. Beta- and gamma-range human lower limb corticomuscular coherence. Front Hum Neurosci, 2012, 6: 258.
|
| 7. |
Kristeva R, Patino L, Omlor W. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage, 2007, 36(3): 785-792.
|
| 8. |
馬培培, 陳迎亞, 杜義浩, 等. 中風康復運動中腦電-肌電相干性分析. 生物醫學工程學雜志, 2014, 31(5): 971-977.
|
| 9. |
Chen X, Xie P, Zhang Y, et al. Abnormal functional corticomuscular coupling after stroke. Neuroimage Clin, 2018, 19: 147-159.
|
| 10. |
Yu H, Xu W, Zhuang Y, et al. Wavelet coherence analysis of muscle coupling during reaching movement in stroke. Comput Biol Med, 2021, 131: 104263.
|
| 11. |
Mehrkanoon S, Breakspear M, Boonstra T W. The reorganization of corticomuscular coherence during a transition between sensorimotor states. NeuroImage, 2014, 100: 692-702.
|
| 12. |
Mendez-Balbuena I, Huethe F, Schulte-M?nting J, et al. Corticomuscular coherence reflects interindividual differences in the state of the corticomuscular network during low-level static and dynamic forces. Cereb Cortex, 2012, 22(3): 628-638.
|
| 13. |
Tuncel D, Dizibuyuk A, Kiymik M K. Time frequency based coherence analysis between EEG and EMG activities in fatigue duration. J Med Syst, 2010, 34(2): 131-138.
|
| 14. |
Xu Y, Mcclelland V M, Cvetkovi Z, et al. Cortico-muscular coherence with time lag with application to delay estimation. IEEE Trans Biomed Eng, 2017, 64(3): 588-600.
|
| 15. |
Ioannides A A, Mitsis G D. Do we need to consider non-linear information flow in corticomuscular interaction?. Clin Neurophysiol, 2010, 121(3): 272-273.
|
| 16. |
Yang Yuan, Solis-Escalante T, Yao Jun, et al. Nonlinear connectivity in the human stretch reflex assessed by cross-frequency phase coupling. Int J Neural Syst, 2016, 26(8): 1650043.
|
| 17. |
Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets. Science, 2011, 334(662): 1518-1524.
|
| 18. |
Su L, Wang L, Shen H, et al. Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI study. Front Hum Neurosci, 2013, 7: 702.
|
| 19. |
Tian Yin, Zhang Huiling, Li Peiyang, et al. A complementary method of PCC for the construction of scalp resting-state EEG connectome: maximum information coefficient. IEEE Access, 2019, 7: 27146-27154.
|
| 20. |
Liang T, Zhang Q, Liu X, et al. Time-frequency maximal information coefficient method and its application to functional corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(11): 2515-2524.
|
| 21. |
Liang T, Zhang Q, Liu X, et al. Identifying bidirectional total and non-linear information flow in functional corticomuscular coupling during a dorsiflexion task: a pilot study. J Neuroeng Rehabil, 2021, 18(1): 74.
|
| 22. |
Shao F, Li K, Xu X. Railway accidents analysis based on the improved algorithm of the maximal information coefficient. Intelligent Data Analysis, 2016, 20(3): 597-613.
|
| 23. |
Hénon M. A two-dimensional mapping with a strange attractor. Commun Math Phys, 1976, 50(1): 69-77.
|
| 24. |
Schiff S J, So P, Chang T, et al. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E, 1996, 54(6): 6708-6724.
|
| 25. |
Vialatte F B, Martin C, Dubois R, et al. A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics. Neural Netw, 2007, 20(2): 194-209.
|
| 26. |
Albanese D, Filosi M, Visintainer R, et al. Minerva and minepy: a C engine for the MINE suite and its R, python and MATLAB wrappers. Bioinformatics, 2013, 29(3): 407-408.
|
| 27. |
Arthur D, Vassilvitskii S. K-means++: the advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans:SIAM, 2007: 1027-1035.
|
| 28. |
Ma X F, Huang X L, Du S D, et al. Symbolic joint entropy reveals the coupling of various brain regions. Phys A, 2018, 490: 1087-1095.
|
| 29. |
Gerloff C, Richard J, Hadley J, et al. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 1998, 121(8): 1513-1531.
|
| 30. |
Nunez P L, Srinivasan R, Westdorp A F, et al. EEG coherency. Clin Neurophysiol, 1997, 103(5): 499-515.
|
| 31. |
Zhang Ziqing, Sun Shu, Yi Ming, et al. MIC as an appropriate method to construct the brain functional network. Biomed Res Int, 2015(1): 825136.
|
| 32. |
Lu C F, Teng S, Hung C I, et al. Reorganization of functional connectivity during the motor task using EEG time-frequency cross mutual information analysis. Clin Neurophysiol, 2011, 122(8): 1569-1579.
|
| 33. |
Fang Y, Daly J J, Sun J, et al. Functional corticomuscular connection during reaching is weakened following stroke. Clin Neurophysiol, 2009, 120(5): 994-1002.
|
| 34. |
Meng F, Tong K Y, Chan S T, et al. Cerebral plasticity after subcortical stroke as revealed by cortico-muscular coherence. IEEE Trans Neural Syst Rehabil Eng, 2009, 17(3): 234-243.
|
| 35. |
Mima T, Hallett M. Corticomuscular coherence: a review. J Clin Neurophysiol, 1999, 16(6): 501-511.
|
| 36. |
Chen X L, Zhang Y Y, Cheng S C, et al. Transfer spectral entropy and application to functional corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(5): 1092-1102.
|