| 1. | Hetu S, Gregoire M, Saimpont A, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav R, 2013, 37(5): 930-949. | 
				                                                        
				                                                            
				                                                                | 2. | Torres P E, Torres E A, Hernandez Alvarez M, et al. EEG-based BCI emotion recognition: a survey. Sensors(Basel), 2020, 20(18): 5083. | 
				                                                        
				                                                            
				                                                                | 3. | Liu Yiliang, Su Wenbin, Li Zhijun, et al. Motor-imagery-based teleoperation of a dual-arm robot performing manipulation tasks. IEEE Trans Cogn Dev Syst, 2019, 11(3): 414-424. | 
				                                                        
				                                                            
				                                                                | 4. | Nourmohammadi A, Jafari M, Zander T O. A survey on unmanned aerial vehicle remote control using brain–computer interface. IEEE Trans Hum-Mach Syst, 2018, 48(4): 337-348. | 
				                                                        
				                                                            
				                                                                | 5. | Wang H, Li T, Bezerianos A, et al. The control of a virtual automatic car based on multiple patterns of motor imagery BCI. Med Biol Eng Comput, 2019, 57(1): 299-309. | 
				                                                        
				                                                            
				                                                                | 6. | Tariq M, Trivailo P M, Simic M. Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI. PLoS One, 2020, 15(3): e0230184. | 
				                                                        
				                                                            
				                                                                | 7. | Wang Kun, Xu Minpeng, Wang Yijun, et al. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces. J Neural Eng, 2020, 17(1): 016033. | 
				                                                        
				                                                            
				                                                                | 8. | Lotte F, Congedo M, Lecuyer A, et al. A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng, 2007, 4(2): R1-R13. | 
				                                                        
				                                                            
				                                                                | 9. | Kevric J, Subasi A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Proces, 2017, 31: 398-406. | 
				                                                        
				                                                            
				                                                                | 10. | 周志華. 機器學習. 北京: 清華大學出版社, 2016: 53. | 
				                                                        
				                                                            
				                                                                | 11. | Lotte F. Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces. Pro IEEE, 2015, 103(6): 871-890. | 
				                                                        
				                                                            
				                                                                | 12. | Razzak I, Hameed I A, Xu G. Robust sparse representation and multiclass support matrix machines for the classification of motor imagery EEG signals. IEEE J Transl Eng He, 2019, 7: 1-8. | 
				                                                        
				                                                            
				                                                                | 13. | Saleh A I, Shehata S A, Labeeb L M. A fuzzy-based classification strategy (FBCS) based on brain-computer interface. Soft Comput, 2019, 23(7): 2343-2367. | 
				                                                        
				                                                            
				                                                                | 14. | Miao Minmin, Zeng Hong, Wang Aimin, et al. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: an sparse regression and weighted naive bayesian classifier-based approach. J Neurosci Methods, 2017, 278: 13-24. | 
				                                                        
				                                                            
				                                                                | 15. | Craik A, He Y, Contreras Vidal J L. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng, 2019, 16(3): 031001. | 
				                                                        
				                                                            
				                                                                | 16. | Olivas-Padilla B E, Chacon-Murguia M I. Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl Soft Comput, 2019, 75: 461-472. | 
				                                                        
				                                                            
				                                                                | 17. | Sakhavi S, Guan C, Yan S. Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Netw Learn Syst, 2018, 29(11): 5619-5629. | 
				                                                        
				                                                            
				                                                                | 18. | Xu Baoguo, Zhang Linlin, Song Aiguo, et al. Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. IEEE Access, 2019, 7: 6084-6093. | 
				                                                        
				                                                            
				                                                                | 19. | Lun Xiangmin, Yu Zhenglin, Chen Tao, et al. A simplified CNN classification method for MI-EEG via the electrode pairs signals. Front Hum Neurosci, 2020, 14: 338. | 
				                                                        
				                                                            
				                                                                | 20. | Li G, Lee C H, Jung J J, et al. Deep learning for EEG data analytics: a survey. Concurr Comp-Pract E, 2019, 32(18): e5199. | 
				                                                        
				                                                            
				                                                                | 21. | Luo T-J, Zhou C-L, Chao F. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. Bmc Bioinformatics, 2018, 19: 344. | 
				                                                        
				                                                            
				                                                                | 22. | Xu Jiacan, Zheng Hao, Wang Jianhui, et al. Recognition of EEG signal motor imagery intention based on deep multi-view feature learning. Sensors(Basel), 2020, 20(12): 3496. | 
				                                                        
				                                                            
				                                                                | 23. | Lu Na, Li Tengfei, Ren Xiaodong, et al. A deep learning scheme for motor imagery classification based on restricted boltzmann machines. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(6): 566-576. | 
				                                                        
				                                                            
				                                                                | 24. | Yang Jun, Yao Shaowen, Wang Jin. Deep fusion feature learning network for MI-EEG classification. IEEE Access, 2018, 6: 79050-79059. | 
				                                                        
				                                                            
				                                                                | 25. | Ha K W, Jeong J W. Motor imagery EEG classification using capsule networks. Sensors(Basel), 2019, 19(13): 2854. | 
				                                                        
				                                                            
				                                                                | 26. | 周曉宇, 許敏鵬, 肖曉琳, 等. 腦-機接口中腦電解碼算法研究綜述. 生物醫學工程學雜志, 2019, 36(5): 856-861. | 
				                                                        
				                                                            
				                                                                | 27. | Yger F, Berar M, Lotte F. Riemannian approaches in brain-computer interfaces: a review. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(10): 1753-1762. | 
				                                                        
				                                                            
				                                                                | 28. | Barachant A, Bonnet S, Congedo M, et al. Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans Biomed Eng, 2012, 59(4): 920-928. | 
				                                                        
				                                                            
				                                                                | 29. | Congedo M, Barachant A, Bhatia R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces, 2017, 4(3): 155-174. | 
				                                                        
				                                                            
				                                                                | 30. | Singh A, Lal S, Guesgen H W. Small sample motor imagery classification using regularized riemannian features. IEEE Access, 2019, 7: 46858-46869. | 
				                                                        
				                                                            
				                                                                | 31. | Tang F, Fan M, Tino P. Generalized learning riemannian space quantization: a case study on riemannian manifold of SPD matrices. IEEE Trans Neural Netw Learn Syst, 2020, 32(1): 281-292. | 
				                                                        
				                                                            
				                                                                | 32. | Xie Xiaofeng, Yu Zhu Liang, Gu Zhenghui, et al. Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(3): 698-708. | 
				                                                        
				                                                            
				                                                                | 33. | Shin J. Random subspace ensemble learning for functional near-infrared spectroscopy brain-computer interfaces. Front Hum Neurosci, 2020, 14: 236. | 
				                                                        
				                                                            
				                                                                | 34. | Zhang Ranran, Xiao Xiaoyan, Liu Zhi, et al. A new motor imagery EEG classification method FB-TRCSP+RF based on CSP and random forest. IEEE Access, 2018, 6: 44944-44950. | 
				                                                        
				                                                            
				                                                                | 35. | Luo Jing, Gao Xing, Zhu Xiaobei, et al. Motor imagery EEG classification based on ensemble support vector learning. Comput Methods Programs Biomed, 2020, 193: 105464. | 
				                                                        
				                                                            
				                                                                | 36. | Zhang Li, Wen Dezhong, Li Changsheng, et al. Ensemble classifier based on optimized extreme learning machine for motor imagery classification. J Neural Eng, 2020, 17(2): 026004. | 
				                                                        
				                                                            
				                                                                | 37. | Talukdar U, Hazarika S M, Gan J Q. Adaptive feature extraction in EEG-based motor imagery BCI: tracking mental fatigue. J Neural Eng, 2020, 17(1): 016020. | 
				                                                        
				                                                            
				                                                                | 38. | Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng, 2018, 15(3): 031005. | 
				                                                        
				                                                            
				                                                                | 39. | Talukdar U, Hazarika S M, Gan J Q. Adaptation of common spatial patterns based on mental fatigue for motor-imagery BCI. Biomed Signal Proces, 2020, 58: 101829. | 
				                                                        
				                                                            
				                                                                | 40. | Priyatharshini R, Chitrakala S. A self-learning fuzzy rule-based system for risk-level assessment of coronary heart disease. IETE J Res, 2018, 65(3): 288-297. | 
				                                                        
				                                                            
				                                                                | 41. | Komijani H, Parsaei M R, Khajeh E, et al. EEG classification using recurrent adaptive neuro-fuzzy network based on time-series prediction. Neural Comput Appl, 2019, 31(7): 2551-2562. | 
				                                                        
				                                                            
				                                                                | 42. | Saha S, Baumert M. Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: a review. Front Comput Neurosci, 2019, 13: 87. | 
				                                                        
				                                                            
				                                                                | 43. | Pan S J, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng, 2010, 22(10): 1345-1359. | 
				                                                        
				                                                            
				                                                                | 44. | Azab A M, Mihaylova L, Ang K K, et al. Weighted transfer learning for improving motor imagery-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(7): 1352-1359. | 
				                                                        
				                                                            
				                                                                | 45. | Wu Ha, Niu Yi, Li Fu, et al. A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification. Front Neurosci, 2019, 13: 1275. | 
				                                                        
				                                                            
				                                                                | 46. | Tan Chuanqi, Sun Fuchun, Fang Bin, et al. Autoencoder-based transfer learning in brain–computer interface for rehabilitation robot. Int J Adv Robot Syst, 2019, 16(2): 1729881419840860. | 
				                                                        
				                                                            
				                                                                | 47. | Xu Lichao, Xu Minpeng, Ke Yufeng, et al. Cross-dataset variability problem in EEG decoding with deep learning. Front Hum Neurosci, 2020, 14: 103. |