| 1. |
Crea F, Camici P G. Bairey Merz C N Coronary microvascular dysfunction: an update. Eur Heart J, 2014, 35(17): 1101-1111.
|
| 2. |
Xu J, Lo S, Juergens C P, et al. Assessing coronary microvascular dysfunction in ischaemic heart disease: little things can make a big difference. Heart Lung Circ, 2020, 29(1): 118-127.
|
| 3. |
唐莉莉, 姚道闊. 冠狀動脈微循環障礙與心肌缺血關系的研究進展. 心血管病學進展, 2017, 38(6): 648-651.
|
| 4. |
Ong P, Safdar B, Seitz A, et al. Diagnosis of coronary microvascular dysfunction in the clinic. Cardiovasc Res, 2020, 116(4): 841-855.
|
| 5. |
Spyridopoulos I, Arthur H M. Microvessels of the heart: Formation, regeneration and dysfunction. Microcirculation, 2017, 24(1): e12338.
|
| 6. |
Zhang Yudong, Li Meijiao, Qi Liang, et al. Hypertrophic cardiomyopathy: cardiac structural and microvascular abnormalities as evaluated with multi-parametric MRI. Eur J Radiol, 2015, 84(8): 1480-1486.
|
| 7. |
《中國冠狀動脈血流儲備分數測定技術臨床路徑專家共識》專家組. 中國冠狀動脈血流儲備分數測定技術臨床路徑專家共識. 中國介入心臟病學雜志, 2019, 27(3): 121-133.
|
| 8. |
Ge Xinyang, Liu Youjun, Tu Shengxian, et al. Model-based analysis of the sensitivities and diagnostic implications of FFR and CFR under various pathological conditions. Int J Numer Method Biomed Eng, 2019: e3257.
|
| 9. |
Garcia D, Harbaoui B, van de Hoef T P, et al. Relationship between FFR, CFR and coronary microvascular resistance—Practical implications for FFR-guided percutaneous coronary intervention. PLoS One, 2019, 14(1): e0208612.
|
| 10. |
王偉民, 劉健, 趙紅, 等. 心肌血流儲備分數評價狹窄冠狀動脈功能的臨床意義. 中華心血管病雜志, 2002, 30(5): 276-278.
|
| 11. |
魯碩, 侯鳳霞, 于曉波. 冠脈血流儲備分數對急性心肌梗死急診 PCI 術后冠脈微循環功能的評價. 中西醫結合心血管病電子雜志, 2017, 5(36): 90-91.
|
| 12. |
Tremmel J A, Fearon W F, Lee B K, et al. Response to letters regarding article, “Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease”. Circulation, 2015, 132(20): 224-226.
|
| 13. |
Park S, Baek Y, Lee M, et al. Comprehensive assessment of microcirculation after primary percutaneous intervention in ST segment elevation myocardial infarction. Coron Artery Dis, 2016, 27(1): 34-39.
|
| 14. |
You W, Yang Z J, Ye F. Value of index of microcirculatory resistance for early prediction of periprocedural myocardial microcirculatory injury after percutaneous coronary intervention in patients with coronary heart disease. Zhonghua Xin Xue Guan Bing Za Zhi, 2019, 47(11): 894-900.
|
| 15. |
向義桂, 張前燕, 熊青峰, 等. 微循環阻力指數與非心肌梗死冠心病病人心肌微循環狀態的相關性分析. 中西醫結合心腦血管病雜志, 2020, 18(5): 792-796.
|
| 16. |
Schindler T H, Dilsizian V. Coronary microvascular dysfunction: clinical considerations and noninvasive diagnosis. JACC Cardiovasc Imaging, 2020, 13(1): 140-155.
|
| 17. |
Mathew R C, Bourque J M, Salerno M, et al. Cardiovascular imaging techniques to assess microvascular dysfunction. JACC Cardiovasc Imaging, 2019, 13(7).
|
| 18. |
Mayala H A, Bakari K H, Mkangala A, et al. The association of 18F-FDG PET/CT and biomarkers in confirming coronary microvascular dysfunction. BMC Res Notes, 2018, 11(1): 796.
|
| 19. |
Nose N, Fukushima K, Lapa C, et al. Assessment of coronary flow reserve using a combination of planar first-pass angiography and myocardial SPECT: Comparison with myocardial 15O-water PET. Int J Cardiol, 2016, 222(1): 209-212.
|
| 20. |
Klein R, Celiker-Guler E, Rotstein B H, et al. PET and SPECT tracers for myocardial perfusion imaging. Semin Nucl Med, 2020, 50(3): 208-218.
|
| 21. |
袁建偉, 馮彥林, 張培培, 等. SPECT/CT 心肌灌注顯像在原發性微血管性心絞痛患者中的臨床價值. 廣東醫學, 2016, 37(6): 841-844.
|
| 22. |
Ceyrat Q, Bordenave L, Couffinhal T, et al. A rapid protocol to evaluate coronary flow reserve with myocardial scintigraphy: A prospective study using Regadenoson. Médecine Nucléaire, 2020.
|
| 23. |
Sucato V, Evola S, Novo G, et al. Stable microvascular angina: instrumental evaluation of coronary microvascular dysfunction with coronary angiography and myocardial scintigraphy. Int J Cardiol, 2014, 171(3): e127-e128.
|
| 24. |
Niimi T, Nanasato M, Sugimoto M, et al. Evaluation of cadmium-zinc-telluride detector-based single-photon emission computed tomography for nuclear cardiology: a comparison with conventional Anger single-photon emission computed tomography. Nucl Med Mol Imaging (2010), 2017, 51(4): 331-337.
|
| 25. |
張涵, 秦珊珊, 樊鑫, 等. D-SPECT 在冠心病患者早期診斷和心功能評估中的價值. 同濟大學學報: 醫學版, 2019, 40(2): 152-156.
|
| 26. |
Senior R, Becher H, Monaghan M, et al. Clinical practice of contrast echocardiography: recommendation by the European Association of Cardiovascular Imaging (EACVI) 2017. Eur Heart J Cardiovasc Imaging, 2017, 18(11): 1205-1205a.
|
| 27. |
Eskandari M, Monaghan M. Contrast echocardiography in daily clinical practice. Herz, 2017, 42(3): 271-278.
|
| 28. |
Everaars H, de Waard G A, Driessen R S, et al. Doppler flow velocity and thermodilution to assess coronary flow reserve: a head-to-head comparison with [15O] H2O PET. JACC Cardiovasc Interv, 2018, 11(20): 2044-2054.
|
| 29. |
洪然. 心肌聲學造影低機械指數實時超聲成像法定量評價豬急性心肌梗死再灌注后冠脈微循環狀態的研究. 呼和浩特: 內蒙古醫科大學, 2019.
|
| 30. |
李亞瓊, 田新橋. 心肌超聲造影評價糖尿病心肌病微循環障礙的應用進展. 中華實用診斷與治療雜志, 2020, 34(4): 423-425.
|
| 31. |
程可愛, 尹鳳英, 王勝煌. 冠狀動脈血流與心肌灌注CT評估方法與進展. 心腦血管病防治, 2020, 20(1): 96-97, 115.
|
| 32. |
Andreini D, Mushtaq S, Pontone G, et al. CT perfusion versus coronary CT angiography in patients with suspected in-stent restenosis or CAD progression. JACC Cardiovasc Imaging, 2020, 13(3): 732-742.
|
| 33. |
Tanabe Y, Kido T, Uetani T, 等. 動態 CT 灌注成像識別心肌缺血與梗死, 與心臟 MR 及 SPECT 進行比較. 國際醫學放射學雜志, 2017, 40(1): 100.
|
| 34. |
Williams M C, Mirsadraee S, Dweck M R, et al. Computed tomography myocardial perfusion vs 15O-water positron emission tomography and fractional flow reserve. Eur Radiol, 2017, 27(3): 1114-1124.
|
| 35. |
Sorgaard M H, Kofoed K F, Linde J J, et al. Diagnostic accuracy of static CT perfusion for the detection of myocardial ischemia. J Cardiovasc Comput Tomogr, 2016, 10(6): 450-457.
|
| 36. |
Ho K T, Ong H Y, Tan G, et al. Dynamic CT myocardial perfusion measurements of resting and hyperaemic blood flow in low-risk subjects with 128-slice dual-source CT. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 300-306.
|
| 37. |
李璐, 趙世華. 磁共振成像識別急性心肌梗死后微循環障礙的研究進展. 中華心血管病雜志, 2019, 47(4): 335-338.
|
| 38. |
Kotecha T, Martinez-Naharro A, Boldrini M, et al. Automated pixel-wise quantitative myocardial perfusion mapping by CMR to detect obstructive coronary artery disease and coronary microvascular dysfunction: validation against invasive coronary physiology. JACC Cardiovasc Imaging, 2019, 12(10): 1958-1969.
|
| 39. |
Taqueti V R, Di Carli M F. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol, 2018, 72(21): 2625-2641.
|
| 40. |
Pontone G, Andreini D, Guaricci A I, et al. Association between haptoglobin phenotype and microvascular obstruction in patients with STEMI: a cardiac magnetic resonance study. JACC Cardiovasc Imaging, 2019, 12(6): 1007-1017.
|
| 41. |
Alkhalil M, Borlotti A, De Maria G L, et al. Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction. J Cardiovasc Magn Reson, 2020, 22(1): 1-12.
|
| 42. |
Liu A, Wijesurendra R S, Liu J M, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol, 2018, 71(9): 957-968.
|
| 43. |
McAlindon E, Pufulete M, Harris J, et al. Microvascular dysfunction determines infarct characteristics in patients with reperfused ST-segment elevation myocardial infarction: The MICROcirculation in Acute Myocardial Infarction (MICRO-AMI) study. PloS one, 2018, 13(11): e0203750.
|
| 44. |
Sheng Xincheng, Qiao Zhiqing, Ge Heng, et al. Novel application of quantitative flow ratio for predicting microvascular dysfunction after ST-segment-elevation myocardial infarction. Catheter Cardiovasc Interv, 2020, 95(Suppl 1): 624-632.
|
| 45. |
Padro T, Manfrini O, Bugiardini R, et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'. Cardiovasc Res, 2020, 116(4): 741-755.
|