| 1. |
O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res, 1971, 34(1): 171-175.
|
| 2. |
Taube J S, Muller R U, Ranck J B. Head-direction cells recorded from the postsubiculum in freely moving rats. J Neurosci, 1990, 10(2): 420-435.
|
| 3. |
Taube J S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci, 1995, 15(1): 70-86.
|
| 4. |
Kropff E, Carmichael J E, Moser M B, et al. Speed cells in the medial entorhinal cortex. Nature, 2015, 523(7561): 419-424.
|
| 5. |
Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex. Nature, 2005, 436(752): 801-806.
|
| 6. |
Solstad T, Moser E I, Einevoll G T. From grid cells to place cells: A mathematical model. Hippocampus, 2006, 16(12): 1026-1031.
|
| 7. |
Moser E I, Moser M B. A metric for space. Hippocampus, 2008, 18(12): 1142-1156.
|
| 8. |
Burgess N, Barry C, O’Keefe J. An oscillatory interference model of grid cell firing. Hippocampus, 2007, 17(9): 801-812.
|
| 9. |
Hasselmo M E, Giocomo L M, Zilli E A. Grid cell firing May arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus, 2007, 17(12): 1252-1271.
|
| 10. |
Si Bailu, Romani S, Tsodyks M. Continuous attractor network model for conjunctive position-by-velocity tuning of grid cells. PLoS Comput Biol, 2014, 10(4): e1003558.
|
| 11. |
Erdem U M, Hasselmo M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells. Eur J Neurosci, 2012, 35(6): 916-931.
|
| 12. |
Fuhs M C, Touretzky D S. A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci, 2006, 26(16): 4266-4276.
|
| 13. |
Burak Y, Fiete I R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol, 2009, 5(2): e1000291.
|
| 14. |
于乃功, 苑云鶴, 李倜, 等. 一種基于海馬認知機理的仿生機器人認知地圖構建方法. 自動化學報, 2018, 44(1): 52-73.
|
| 15. |
Mittelstaedt M L, Mittelstaedt H. Homing by path integration in a mammal. Sci Nat, 1980, 67(11): 566-567.
|
| 16. |
McNaughton B L, Battaglia F P, Jensen O, et al. Path integration and the neural basis of the 'cognitive map'. Nat Rev Neurosci, 2006, 7(8): 663-678.
|
| 17. |
Yoder R M, Taube J S. The vestibular contribution to the head direction signal and navigation. Front Integr Neurosci, 2014, 8(4): 32-38.
|
| 18. |
Raudies F, Hasselmo M E. Differences in visual-spatial input may underlie different compression properties of firing fields for grid cell modules in medial entorhinal cortex. PLoS Comput Biol, 2015, 11(11): e1004596.
|
| 19. |
謝康寧. 被動運動相關的海馬神經信號解析與信息編碼模型研究. 北京: 清華大學, 2012.
|
| 20. |
于乃功, 方略, 羅子維, 等. 大鼠腦海馬結構認知機理及其在機器人導航中的應用. 北京工業大學學報, 2017, 43(3): 434-442.
|
| 21. |
羅子維. 基于鼠腦空間認知機理的空間表達方法研究. 北京: 北京工業大學, 2018.
|
| 22. |
Farnebck G. Two-frame motion estimation based on polynomial expansion. Image Anal, 2003, 2749: 363-370.
|
| 23. |
崔海清, 劉希玉. 基于粒子群算法的 RBF 網絡參數優化算法. 計算機技術與發展, 2009, 19(12): 117-119.
|
| 24. |
李林, 李建兵, 牛鵬超. 基于粒子群算法的 RBF 神經網絡的優化方法. 山東電力高等專科學校學報, 2010, 13(1): 51-53.
|
| 25. |
Campbell M G, Ocko S A, Mallory C S, et al. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nat Neurosci, 2018, 21(8): 1096-1106.
|
| 26. |
Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci, 1996, 16(6): 2112-2126.
|
| 27. |
Paul A D, Emma R W, Anna S. A new perspective on the head direction cell system and spatial behavior. Neurosci Biobehav Rev, 2019, 105(2019): 24-33.
|
| 28. |
Chen Guifen, Lu Yi, King J A, et al. Differential influences of environment and self-motion on place and grid cell firing. Nat Commun, 2019, 10(1): 630-640.
|
| 29. |
李倜. 基于鼠腦海馬認知機理的機器人面向目標的導航模型研究. 北京: 北京工業大學, 2016.
|