| 1. | 彭亮, 侯增廣, 王晨, 等. 康復輔助機器人及其物理人機交互方法. 自動化學報, 2018, 44(11): 2000-2010. | 
				                                                        
				                                                            
				                                                                | 2. | 崔立軍, 鮑勇, 陳昕, 等. 中國康復臨床實踐指南的質量評價. 中國循證醫學雜志, 2019, 19(6): 723-728. | 
				                                                        
				                                                            
				                                                                | 3. | Li W F, Hu X Y, Gravina R, et al. A neuro-fuzzy fatigue-tracking and classification system for wheelchair users. IEEE Access, 2017, 5: 19420-19431. | 
				                                                        
				                                                            
				                                                                | 4. | Shahmoradi S, Zare A, Behzadipour S. Fatigue status recognition in a post-stroke rehabilitation exercise with sEMG signal//24th National Iranian Conference on Biomedical Engineering/2nd International Iranian Conference on Biomedical Engineering (ICBME). Tehran: IEEE, 2017: 162-166. | 
				                                                        
				                                                            
				                                                                | 5. | 謝平, 劉歡, 王磊磊, 等. 基于腦肌電反饋的虛擬康復訓練系統設計. 儀器儀表學報, 2018, 39(1): 250-257. | 
				                                                        
				                                                            
				                                                                | 6. | 于亞萍, 孫立寧, 張峰峰, 等. 基于小波變換的多特征融合sEMG模式識別. 傳感技術學報, 2016, 29(4): 512-518. | 
				                                                        
				                                                            
				                                                                | 7. | 徐國政, 宋愛國, 高翔, 等. 基于焦慮情緒與混雜控制的機器人輔助臨床康復實驗. 儀器儀表學報, 2017, 38(10): 2364-2372. | 
				                                                        
				                                                            
				                                                                | 8. | Mei Z N, Gu X, Chen W, et al. Automatic atrial fibrillation detection based on heart rate variability and spectral features. IEEE Access, 2018, 6: 53566-53575. | 
				                                                        
				                                                            
				                                                                | 9. | Berkaya S K, Uysal A K, Gunal E S, et al. A survey on ECG analysis. Biomed Signal Process Control, 2018, 43: 216-235. | 
				                                                        
				                                                            
				                                                                | 10. | Zhang Z Q, Ji L Y, Huang Z P, et al. Adaptive information fusion for human upper limb movement estimation. IEEE Trans Syst Man Cybern, 2012, 42(5): 1100-1108. | 
				                                                        
				                                                            
				                                                                | 11. | Zhao L N, Liu C Y, Wei S S, et al. Enhancing detection accuracy for clinical heart failure utilizing pulse transit time variability and machine learning. IEEE Access, 2019, 7: 17716-17724. | 
				                                                        
				                                                            
				                                                                | 12. | Aly H I, Youssef S, Fathy C. Hybrid brain computer interface for movement control of upper limb prostheses//International Conference on Biomedical Engineering and Applications (ICBEA). Funchal: IEEE, 2018: 86-91. | 
				                                                        
				                                                            
				                                                                | 13. | Baumgartner C, Koren J P, Rothmayer M. Automatic computer-based detection of epileptic seizures. Front Neurol, 2018, 9: 1-9. | 
				                                                        
				                                                            
				                                                                | 14. | Astorino T A, Allen R P, Roberson D W, et al. Attenuated RPE and leg pain in response to short-term high-intensity interval training. Physiol Behav, 2012, 105(2): 402-407. | 
				                                                        
				                                                            
				                                                                | 15. | Cui C K, Blan G B, Hou Z G, et al. A multimodal framework based on integration of cortical and muscular activities for decoding human intentions about lower limb motions. IEEE Trans Biomed Circuits Syst, 2017, 11(4): 889-899. | 
				                                                        
				                                                            
				                                                                | 16. | 任斌斌, 譚海燕, 馬成群, 等. 基于白噪聲分離的集合經驗模態分解心電信號去噪方法研究. 生物醫學工程學雜志, 2016, 33(2): 221-226. | 
				                                                        
				                                                            
				                                                                | 17. | Kuthe C D, Uddanwadiker R V, Ramteke A A. Surface electromyography based method for computing muscle strength and fatigue of biceps brachii muscle and its clinical implementation. Inform Med Unlocked, 2018, 12: 34-43. | 
				                                                        
				                                                            
				                                                                | 18. | Liu J K, Yin L Y, He C G, et al. Multiscale autoregressive model-based electrocardiogram identification method. IEEE Access, 2018, 6: 18251-18263. | 
				                                                        
				                                                            
				                                                                | 19. | 李昕, 蔡二娟, 田彥秀, 等. 一種改進腦電特征提取算法及其在情感識別中的應用. 生物醫學工程學雜志, 2017, 34(4): 510-528. | 
				                                                        
				                                                            
				                                                                | 20. | Amin S U, Alsulaiman M, Muhammad G, et al. Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Gener Comput Syst, 2019, 101: 542-554. | 
				                                                        
				                                                            
				                                                                | 21. | Melgani F, Bazi Y. Classification of electro-cardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inform Technol Biomed, 2008, 12(5): 667-677. | 
				                                                        
				                                                            
				                                                                | 22. | Liu C Y, Zhang X Y, Zhao L N, et al. Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system. IEEE Internet of Things J, 2019, 6(2): 1363-1374. | 
				                                                        
				                                                            
				                                                                | 23. | Zhan Y F, Yao H X, Liu Y, et al. Network-based statistic show aberrant functional connectivity in Alzheimer’s disease. IEEE J Sel Top Signal Process, 2016, 10(7): 1182-1188. | 
				                                                        
				                                                            
				                                                                | 24. | Wu Q, Mao J F, Wei C F, et al. Hybrid BF-PSO and fuzzy support vector machine for diagnosis of fatigue status using EMG signal features. Neurocomputing, 2015, 173(3): 483-500. | 
				                                                        
				                                                            
				                                                                | 25. | Karthick P A, Ghosh D M, Ramakrishnan S. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Comput Meth Prog Bio, 2018, 154: 45-56. |