| 1. |
Wostyn P, De Groot V, Van dam D, et al. The glymphatic hypothesis of glaucoma: A unifying concept incorporating vascular, biomechanical, and biochemical aspects of the disease. BioMed Research International, 2017: 5123148-1-5123148-7.
|
| 2. |
Guy A, Wiggs J L, Turalba A, et al. Translating the low translaminar cribrosa pressure gradient hypothesis into the clinical care of glaucoma. Seminars in Ophthalmology, 2016, 31(1-2): 131-139.
|
| 3. |
Kass M, Heuer D K, Higginbotham EJ, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol, 2002, 120(6): 701-713.
|
| 4. |
陳燕云, 梁遠波, 喬利亞. 正常眼壓性青光眼病因學相關因素與分型. 眼科, 2012, 21(1): 19-23.
|
| 5. |
Tham Y C, Wong T Y, Quigley H A, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 2014, 121(11): 2081-2090.
|
| 6. |
Marek B, Harris A, Kanakamedala P, et al. Cerebrospinal fluid pressure and glaucoma: regulation of trans-lamina cribrosa pressure. Br J Ophthalmol, 2014, 98(6): 721-725.
|
| 7. |
Liu Hanruo, Yang Diya, Ma Teng, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle glaucoma. Am J Ophthalmol, 2018, 186: 128-137.
|
| 8. |
Leske M C, Wu S Y, Hennis A, et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology, 2008, 115(1): 85-93.
|
| 9. |
Fan N, Wang P, Tang L, et al. Ocular blood flow and normal tension glaucoma. BioMed Research International, 2015: 308505. DOI: 10.1155/2015/308505.
|
| 10. |
Samsudin A, Isaacs N, Tai M L S, et al. Ocular perfusion pressure and ophthalmic artery flow in patients with normal tension glaucoma. BMC Ophthalmol, 2016, 16: 39. DOI: 10.1186/s12886-016-0215-3.
|
| 11. |
Hou R, Zhang Z, Yang D, et al. Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Brain Research, 2016, 1635: 201-208.
|
| 12. |
Yavin D, Luu J, James M T, et al. Diagnostic accuracy of intraocular pressure measurement for the detection of raised intracranial pressure: meta-analysis. J Neurosurg, 2014, 121(3): 680-687.
|
| 13. |
吳文文, 唐莉. 低顱壓與正常眼壓性青光眼的關系. 眼科新進展, 2015, 35(4): 390-392.
|
| 14. |
Lindén C, Qvarlander S, Jóhannesson G, et al. Normal-tension glaucoma has normal intracranial pressure a prospective study of intracranial pressure and intraocular pressure in different body positions. Ophthalmology, 2018, 125(3): 361-368.
|
| 15. |
Downs J C, Girkin C A. Lamina cribrosa in glaucoma. Curr Opin Ophthalmol, 2017, 28(2): 113-119.
|
| 16. |
梁慶豐, 劉旭陽. 北京眼壓與顱壓相關疾病研究中跨篩板壓力差致青光眼視神經損傷的機制. 中華眼科雜志, 2014, 50(10): 798-800.
|
| 17. |
Ren Ruojin, Jonas J B, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology, 2010, 117(2): 259-266.
|
| 18. |
Wang W, Wang M, Li Z, et al. The intraocular pressure could not be used to determine the intracranial pressure in patients with hydrocephalus. Int J Neurosci, 2018, 8: 1-19.
|
| 19. |
Lee S H, Kwak S W, Kang E M, et al. Estimated trans-lamina cribrosa pressure differences in low-teen and high-teen intraocular pressure normal tension glaucoma: the korean National Health and Nutrition Examination Survey. PLoS One, 2016, 11(2): e0148412.
|
| 20. |
Chen B H, Drucker M D, Louis K M. Progression of normal-tension glaucoma after ventriculoperitoneal shunt to decrease cerebrospinal fluid pressure. J Glaucoma, 2016, 25(1): E50-E52.
|
| 21. |
Gallina P, Savastano A, Becattini E, et al. Glaucoma in patients with shunt-treated normal pressure hydrocephalus. J Neurosurg, 2018, 129(4): 1078-1084.
|
| 22. |
Feola A J, Myers J G, Raykin J, et al. Finite element modeling of factors influencing optic nerve head deformation due to intracranial pressure. Invest Ophthalmol Vis Sci, 2016, 57(4): 1901-1911.
|
| 23. |
Yablonski M, Ritch R, Pokorny K S. Effect of decreased intracranial pressure on optic disc. Invest Ophthalmol Vis Sci, 1979, 18(Suppl): 165.
|
| 24. |
Wang Bo, Tran H, Smith M A, et al. In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure. PLoS One, 2017, 12(11): e0188302.
|
| 25. |
侯若武, 章征, 楊迪亞, 等. 顱內壓與眼內壓的相關性及對視神經的影響: 北京顱眼壓力研究 (iCOP). 中國科學: 生命科學, 2016, 46: 1413-1422.
|
| 26. |
Yang Diya, Fu Jidi, Hou Ruowu, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci, 2014, 55(5): 3067-3073.
|
| 27. |
Tran H, Grimma J, Wanga B, et al. Mapping in-vivo optic nerve head strains caused by intraocular and intracranial pressures. Proc SPIE Int Soc Opt Eng, 2017: 10067. DOI: 10.1117/12.2257360.
|
| 28. |
Gonzálezcamarena P I, Sanjuan D, Gonzálezolhovich I, et al. Dynamic changes of the intraocular pressure and the pressure of cerebrospinal fluid in nonglaucomatous neurological patients. Acta Ophthalmologica, 2017, 95(2): e138-e143.
|
| 29. |
Zhao Da, He Zheng, Vingrys A J, et al. The effect of intraocular and intracranial pressure on retinal structure and function in rats. Physiol Rep, 2015, 3(8): e12507.
|
| 30. |
Abe R Y, Diniz-Filho A, Costa V P, et al. Predicting vision-related disability in glaucoma. Ophthalmology, 2018, 125(1): 22-30.
|
| 31. |
Rajandran N. Glaucoma detection using DWT based energy features and ANN classifier. IOSR Journal of Computer Engineering, 2014, 16(5): 35-42.
|
| 32. |
Choudhary K, Tiwari S. ANN glaucoma detection using cup-to-disk ratio and neuroretinal rim. Int J Comput Appl, 2015, 111(11): 8-14.
|