| 1. |
Chen Bing, Ma Hao, Qin Laiyin, et al. Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation, 2016, 5: 26-37.
|
| 2. |
Kim H, Shin Y J, Kim J. Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. Mechatronics, 2017, 46: 32-45.
|
| 3. |
王海蓮, 張小棟, 李華聰. 士兵可穿戴下肢外骨骼機器人多元感知方法研究. 計算機測量與控制, 2015, 23(10): 3505-3507.
|
| 4. |
Pratt J E, Krupp B T, Morse C J, et al. The RoboKnee: an exoskeleton for enhancing strength and endurance during walking//IEEE Inter Conf Robot Auto, 2004: 2430-2435.
|
| 5. |
Ouyang Xiaoping, Ding Shuo, Fan Boqian, et al. Development of a novel compact hydraulic power unit for the exoskeleton robot. Mechatronics, 2016, 38: 68-75.
|
| 6. |
Hussain S, Xie Shengq, Jamwal P K. Control of a robotic orthosis for gait rehabilitation. Rob Auton Syst, 2013, 61(9): 911-919.
|
| 7. |
Pransky J. The Pransky interview: Russ Angold, co-founder and president of Ekso (TM) Labs. Industrial Robot-an International Journal, 2014, 41(4): 329-334.
|
| 8. |
Gandolla M, Guanziroli E, D’angelo A, et al. Automatic setting procedure for exoskeleton-assisted overground gait: proof of concept on stroke population. Front Neurorobot, 2018, 12: 10.
|
| 9. |
Wang Shiqian, Wang Letian, Meijneke C, et al. Design and control of the MINDWALKER exoskeleton. IEEE Trans Neural Syst Rehabil Eng, 2015, 23(2): 277-286.
|
| 10. |
Chen Bing, Zhong Chunhao, Ma Hao, et al. Sit-to-stand and stand-to-sit assistance for paraplegic patients with CUHK-EXO exoskeleton. Robotica, 2018, 36(4): 535-551.
|
| 11. |
Chen Bing, Zhong Chunhao, Zhao Xuan, et al. A wearable exoskeleton suit for motion assistance to paralysed patients. Journal of Orthopaedic Translation, 2017, 11: 7-18.
|
| 12. |
謝崢, 王明江, 黃武龍, 等. 基于實時步態分析的行走輔助外骨骼機器人系統. 生物醫學工程學雜志, 2017, 34(2): 265-270.
|
| 13. |
Meuleman J, van Asseldonk E, van Oort G, et al. LOPES II—Design and evaluation of an admittance controlled gait training robot with shadow-leg approach. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(3): 352-363.
|
| 14. |
Bayon C, Ramirez O, Serrano J I, et al. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Rob Auton Syst, 2017, 91: 101-114.
|
| 15. |
Feng Yongfei, Wang Hongbo, Du Yaxin, et al. Trajectory planning of a novel lower limb rehabilitation robot for stroke patient passive training. Advances in Mechanical Engineering, 2017, 9(12): 1-10.
|
| 16. |
Torrealba R R, Udelman S B, Fonseca-Rojas E D. Design of variable impedance actuator for knee joint of a portable human gait rehabilitation exoskeleton. Mechanism and Machine Theory, 2017, 116: 248-261.
|
| 17. |
Zhang Mingming, Cao Jinghui, Zhu Guoli, et al. Reconfigurable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR). Robot Auto Sys, 2017, 98: 213-221.
|
| 18. |
朱文超, 徐秀林, 姚曉明, 等. 壓差式氣動減重康復步行訓練系統的設計. 生物醫學工程學雜志, 2017, 34(4): 565-571.
|
| 19. |
Bortole M, Venkatakrishnan A, Zhu Fangshi, et al. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J NeuroEng Rehabil, 2015, 12: 54.
|
| 20. |
Wu Junpeng, Gao Jinwu, Song Rong, et al. The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics, 2016, 33: 13-22.
|
| 21. |
Long Yi, Du Zhijiang, Chen Chaofeng, et al. Development and analysis of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng, 2017, 14(2): 272-283.
|
| 22. |
Karavas N, Ajoudani A, Tsagarakis N, et al. Tele-impedance based assistive control for a compliant knee exoskeleton. Rob Auton Syst, 2015, 73(SI): 78-90.
|
| 23. |
Hyun D J, Park H, Ha Taejun, et al. Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance. Rob Auton Syst, 2017, 95: 181-195.
|
| 24. |
Kardan I, Akbarzadeh A. Robust output feedback assistive control of a compliantly actuated knee exoskeleton. Rob Auton Syst, 2017, 98: 15-29.
|
| 25. |
韓亞麗, 吳振宇, 許有熊, 等. 基于多模式彈性驅動器的膝關節外骨骼機械腿. 機器人, 2017, 39(4): 498-504.
|
| 26. |
Yu H Y, Huang S, Chen G, et al. Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans Robot, 2015, 31(5): 1089-1100.
|
| 27. |
Cestari M, Sanz-Merodio D, Arevalo J C. An adjustable compliant joint for lower-limb exoskeletons. IEEE-ASME Transactions on Mechatronics, 2015, 20(2): 889-898.
|
| 28. |
趙彥峻, 葛文慶, 劉小龍, 等. 外骨骼機器人設計及其機械結構的有限元分析. 機床與液壓, 2016, 44(3): 10-13, 51.
|
| 29. |
Chen Shan, Chen Zheng, Yao Bin, et al. Cascade force control of lower limb hydraulic exoskeleton for human performance augmentation//Proceedings of the Iecon 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, 2016: 512-517.
|
| 30. |
Strausser K A, Swift T A, Zoss A B, et al. Prototype medical exoskeleton for paraplegic mobility: first experimental results// Proceedings of the ASME Dynamic Systems and Control Conference, 2010: 453-458.
|
| 31. |
何健, 王海波, 李雪峰, 等. 負重型下肢外骨骼液壓動力單元的研究. 液壓與氣動, 2017, (11): 6-11.
|
| 32. |
靳興來, 朱世強, 張學群, 等. 液壓驅動下肢助力外骨骼機器人膝關節結構設計及試驗. 農業工程學報, 2017, 33(5): 26-31.
|
| 33. |
唐志勇, 徐曉東, 熊玨, 等. 下肢液壓驅動康復機器人機械設計與運動學研究. 液壓與氣動, 2014, (12): 31-35.
|
| 34. |
Lu Zhiguo, Huo Jun, Wang Yuce, et al. Design and simulation analysis of a lower limbs exoskeleton powered by hydraulic drive// 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), 2017: 173-177.
|
| 35. |
Yamamoto K, Hyodo K, Ishii M, et al. Development of power assisting suit for assisting nurse labor. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 2002, 45(3): 703-711.
|
| 36. |
李超. 氣動肌肉驅動的外骨骼助力系統研究. 杭州: 浙江大學, 2016.
|
| 37. |
Hashimoto Y, Nakanishi Y, Saga N, et al. Development of gait assistive device using pneumatic artificial muscle//IEEE 2016 Joint 8th Inter Conf Soft Comput Intell Sys, 2016: 710-713.
|
| 38. |
滕燕, 楊罡, 王士允, 等. 多模式柔順膝關節康復器設計及力分析. 機械制造與自動化, 2012, 41(2): 143-146.
|
| 39. |
Hong Y P, Koo D, Park J I, et al. The SoftGait: A simple and powerful Weight-Support device for walking and squatting//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 6336-6341.
|
| 40. |
Wan Shilong, Yang Mingxing, Xi Ruru, et al. Design and control strategy of humanoid lower limb exoskeleton driven by pneumatic artificial muscles//Proceedings of 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2016: 157-161.
|
| 41. |
Quy-Thinh D, Yamamoto S I. Tracking control of a robotic orthosis for gait rehabilitation: a feedforward-feedback control approach//2017 10th Biomedical Engineering International Conference (BMEICON), Japan: IEEE, 2017: 1-5.
|
| 42. |
Sarkar A, Dutta A. 8-DoF biped robot with compliant-links. Rob Auton Syst, 2015, 63(1): 57-67.
|
| 43. |
Wang Donghai, Lee K M, Ji Jingjing. A passive gait-based weight-support lower extremity exoskeleton with compliant joints. IEEE Transactions on Robotics, 2016, 32(4): 933-942.
|