1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
Zhou ZY, Wang L, Wang YS, et al. PFKFB3: a potential key to ocular angiogenesis[J/OL]. Front Cell Dev Biol, 2021, 9: 628317[2021-04-11]. https://pubmed.ncbi.nlm.nih.gov/33777937/. DOI: 10.3389/fcell.2021.628317.
|
8. |
|
9. |
|
10. |
|
11. |
|
12. |
|
13. |
|
14. |
|
15. |
|
16. |
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
|
22. |
|
23. |
Shi L, Pan H, Liu Z, et al. Roles of PFKFB3 in cancer[J/OL]. Signal Transduct Target Ther, 2017, 2: 17044[2017-11-24]. https://pubmed.ncbi.nlm.nih.gov/29263928/. DOI: 10.1038/sigtrans.2017.44.
|
24. |
|
25. |
|
26. |
|
27. |
|
28. |
Wu Y, Zhang MH, Xue Y, et al. Effect of microRNA-26a on vascular endothelial cell injury caused by lower extremity ischemia-reperfusion injury through the AMPK pathway by targeting PFKFB3[J]. J Cell Physiol, 2019, 234(3): 2916-2928. DOI: 10.1002/jcp.27108.
|
29. |
|
30. |
|
31. |
|
32. |
|
33. |
|
34. |
|
35. |
|
36. |
|
37. |
|
38. |
|
39. |
|
40. |
Leal-Esteban LC, Fajas L. Cell cycle regulators in cancer cell metabolism[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(5): 165715[2020-05-01]. https://pubmed.ncbi.nlm.nih.gov/32035102/. DOI: 10.1016/j.bbadis.2020.165715.
|
41. |
|
42. |
|
43. |
|
44. |
|
45. |
Draoui N, de Zeeuw P, Carmeliet P. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism[J/OL]. Open Biol, 2017, 7(12): 170219[2017-12-01]. https://pubmed.ncbi.nlm.nih.gov/29263247/. DOI: 10.1098/rsob.170219.
|
46. |
Zhou L, Li J, Wang J, et al. Pathogenic role of PFKFB3 in endothelial inflammatory diseases[J/OL]. Front Mol Biosci, 2024, 11: 1454456[2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/39318551/. DOI: 10.3389/fmolb.2024.1454456.
|
47. |
|
48. |
Sankar MJ, Sankar J, Chandra P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity[J/OL]. Cochrane Database Syst Rev, 2018, 1(1): Cd009734[2018-01-08]. https://pubmed.ncbi.nlm.nih.gov/29308602/. DOI: 10.1002/14651858.CD009734.pub2.
|
49. |
|
50. |
|
51. |
Wang Y, Xie L, Zhu M, et al. Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages[J/OL]. Exp Eye Res, 2021, 213: 108823[2021-11-06]. https://pubmed.ncbi.nlm.nih.gov/34752817/. DOI: 10.1016/j.exer.2021.108823.
|
52. |
|
53. |
|
54. |
|
55. |
Zhou N, Liu L, Li Q. IL1R2 promotes retinal angiogenesis to participate in retinopathy of prematurity by activating the HIF1α/PFKFB3 pathway[J/OL]. Exp Eye Res, 2024, 239: 109750[2023-12-13]. https://pubmed.ncbi.nlm.nih.gov/38097102/. DOI: 10.1016/j.exer.2023.109750.
|
56. |
Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche[J/OL]. Sci Transl Med, 2020, 12(555): 1371[2020-08-05]. https://pubmed.ncbi.nlm.nih.gov/32759274/. DOI: 10.1126/scitranslmed.aay1371.
|
57. |
|
58. |
Wong TY, Cheung CM, Larsen M, et al. Diabetic retinopathy[J/OL]. Nat Rev Dis Primers, 2016, 2: 16013[2016-03-17]. https://pubmed.ncbi.nlm.nih.gov/27159554/. DOI: 10.1038/nrdp.2016.12.
|
59. |
Nawaz IM, Rezzola S, Cancarini A, et al. Human vitreous in proliferative diabetic retinopathy: characterization and translational implications[J/OL]. Prog Retin Eye Res, 2019, 72: 100756[2019-04-02]. https://pubmed.ncbi.nlm.nih.gov/30951889/. DOI: 10.1016/j.preteyeres.2019.03.002.
|
60. |
|
61. |
|
62. |
|
63. |
|
64. |
Blasiak J, Hyttinen JMT, Szczepanska J, et al. Potential of long non-coding RNAs in age-related macular degeneration[J/OL]. Int J Mol Sci, 2021, 22(17): 9178[2021-08-25]. https://pubmed.ncbi.nlm.nih.gov/34502084/. DOI: 10.3390/ijms22179178.
|
65. |
|
66. |
Brodzka S, Baszyński J, Rektor K, et al. The role of glutathione in age-related macular degeneration (AMD)[J/OL]. Int J Mol Sci, 2024, 25(8): 4158[2024-04-09]. https://pubmed.ncbi.nlm.nih.gov/38673745/. DOI: 10.3390/ijms25084158.
|
67. |
|
68. |
|
69. |
|
70. |
|
71. |
Emini Veseli B, Van Wielendaele P, Delibegovic M, et al. The PFKFB3 inhibitor AZ67 inhibits angiogenesis independently of glycolysis inhibition[J/OL]. Int J Mol Sci, 2021, 22(11): 5970[2021-05-31]. https://pubmed.ncbi.nlm.nih.gov/34073144/. DOI: 10.3390/ijms22115970.
|
72. |
|
73. |
Galindo CM, Oliveira Ganzella FA, Klassen G, et al. Nuances of PFKFB3 signaling in breast cancer[J/OL]. Clin Breast Cancer, 2022, 22(4): e604-e614[2022-01-15]. https://pubmed.ncbi.nlm.nih.gov/35135735/. DOI: 10.1016/j.clbc.2022.01.002.
|
74. |
De Oliveira T, Goldhardt T, Edelmann M, et al. Effects of the novel PFKFB3 inhibitor KAN0438757 on colorectal cancer cells and its systemic toxicity evaluation In vivo[J/OL]. Cancers, 2021, 13(5): 1011[2021-02-28]. https://pubmed.ncbi.nlm.nih.gov/33671096/. DOI: 10.3390/cancers13051011.
|
75. |
|
76. |
Xu J, Wang L, Yang Q, et al. Deficiency of myeloid PFKFB3 protects mice from lung edema and cardiac dysfunction in LPS-induced endotoxemia[J/OL]. Front Cardiovasc Med, 2021, 8: 745810[2021-09-29]. https://pubmed.ncbi.nlm.nih.gov/34660743/. DOI: 10.3389/fcvm.2021.745810.
|
77. |
Seo M, Kim JD, Neau D, et al. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect[J/OL]. PLoS One, 2011, 6(9): e24179[2011-09-21]. https://pubmed.ncbi.nlm.nih.gov/21957443/. DOI: 10.1371/journal.pone.0024179.
|
78. |
Abdali A, Baci D, Damiani I, et al. In vitro angiogenesis inhibition with selective compounds targeting the key glycolytic enzyme PFKFB3[J/OL]. Pharmacol Res, 2021, 168: 105592[2021-04-01]. https://pubmed.ncbi.nlm.nih.gov/33813027/. DOI: 10.1016/j.phrs.2021.105592.
|