| 1. | Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology[J]. Br J Ophthalmol, 2019, 103(2): 167-175. DOI: 10.1136/bjophthalmol-2018-313173. | 
				                                                        
				                                                            
				                                                                | 2. | Song P, Yu J, Chan KY, et al. Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis[J/OL]. J Glob Health, 2018, 8(1): 010803[2018-06- 09]. https://pubmed.ncbi.nlm.nih.gov/29899983/. DOI: 10.7189/jogh.08.010803. | 
				                                                        
				                                                            
				                                                                | 3. | Lee AY, Yanagihara RT, Lee CS, et al. Multicenter, head-to-head, real-world validation study of seven automated artificial intelligence diabetic retinopathy screening systems[J]. Diabetes Care, 2021, 44(5): 1168-1175. DOI: 10.2337/dc20-1877. | 
				                                                        
				                                                            
				                                                                | 4. | Ming S, Xie K, Lei X, et al. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study[J]. Int Ophthalmol, 2021, 41(4): 1291-1299. DOI: 10.1007/s10792-020-01685-x. | 
				                                                        
				                                                            
				                                                                | 5. | Islam MM, Yang HC, Poly TN, et al. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: a systematic review and meta-analysis[J/OL]. Comput Methods Programs Biomed, 2020, 191: 105320[2020-01-16]. https://pubmed.ncbi.nlm.nih.gov/32088490/. DOI: 10.1016/j.cmpb.2020.105320. | 
				                                                        
				                                                            
				                                                                | 6. | Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening[J]. JAMA, 2016, 316(22): 2366-2367. DOI: 10.1001/jama.2016.17563. | 
				                                                        
				                                                            
				                                                                | 7. | Zhang Y, Shi J, Peng Y, et al. Artificial intelligence-enabled screening for diabetic retinopathy: a real-world, multicenter and prospective study[J/OL]. BMJ Open Diabetes Res Care, 2020, 8(1): e001596[2020-08-01]. https://pubmed.ncbi.nlm.nih.gov/33087340/. DOI: 10.1136/bmjdrc-2020-001596. | 
				                                                        
				                                                            
				                                                                | 8. | 吳豐玉, 栗夏蓮. 糖尿病患者眼底照相人工與人工智能分析結果比較[J]. 中華眼底病雜志, 2021, 37(1): 27-31. DOI: 10.3760/cma.j.cn511434-20200915-00452.Wu FY, Li XL. Analysis and comparison of artificial and artificial intelligence in diabetic fundus photography[J]. Chin J Ocul Fundus Dis, 2021, 37(1): 27-31. DOI: 10.3760/cma.j.cn511434-20200915-00452. | 
				                                                        
				                                                            
				                                                                | 9. | Olvera-Barrios A, Heeren TF, Balaskas K, et al. Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images[J]. Br J Ophthalmol, 2021, 105(2): 265-270. DOI: 10.1136/bjophthalmol-2019-315394. | 
				                                                        
				                                                            
				                                                                | 10. | 中國醫藥教育協會智能醫學專委會智能眼科學組, 國家重點研發計劃“眼科多模態成像及人工智能診療系統的研發和應用”項目組. 基于眼底照相的糖尿病視網膜病變人工智能篩查系統應用指南[J]. 中華實驗眼科雜志, 2019, 37(8): 593-598. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.001.Intelligent Medicine Special Committee of China Medicine Education Association, National Key Research and Development Program of China ''Development and Application of Ophthalmic Multimodal Imaging and Artificial Intelligence Diagnosis and Treatment System'' Project Team. Guidelines for artificial intelligent diabetic retinopathy screening system based on fundus photography[J]. Chin J Exp Ophthalmol, 2019, 37(8): 593-598. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.001. | 
				                                                        
				                                                            
				                                                                | 11. | Li B, Chen H, Zhang B, et al. Development and evaluation of a deep learning model for the detection of multiplefundus diseases based on colour fundus photography[J/OL]. Br J Ophthalmol, 2021(2021-04-29)[2021-04-29]. https://bjo.bmj.com/content/early/2021/03/30/bjophthalmol-2020-316290.long. DOI: 10.1136/bjophthalmol-2020-316290. [published online ahead of print]. | 
				                                                        
				                                                            
				                                                                | 12. | 高韶暉, 金學民, 趙朝霞, 等. 糖尿病視網膜病變人工智能機器人輔助診斷系統的建立及應用[J]. 中華實驗眼科雜志, 2019, 37(8): 669-673. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.016.Gao SH, Jin XM, Zhao ZX, et al. Validation and application of an artificial intelligence robot assisted diagnosis system for diabetic retinopathy[J]. Chin J Exp Ophthalmol, 2019, 37(8): 669-673. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.016. | 
				                                                        
				                                                            
				                                                                | 13. | Xie Y, Nguyen QD, Hamzah H, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study[J/OL]. Lancet Digit Health, 2020, 2(5): e240-e249[2020-04-23]. https://pubmed.ncbi.nlm.nih.gov/33328056/. DOI: 10.1016/S2589-7500(20)30060-1. | 
				                                                        
				                                                            
				                                                                | 14. | Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings[J]. Ophthalmology, 2018, 125(10): 1608-1622. DOI: 10.1016/j.ophtha.2018.04.007. | 
				                                                        
				                                                            
				                                                                | 15. | 楊葉輝, 劉佳, 許言午, 等. 基于多尺度卷積神經網絡的糖尿病視網膜病變病灶檢測算法及應用[J]. 中華實驗眼科雜志, 2019, 37(8): 624-629. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.007.Yang YH, Liu J, Xu YW, et al. A novel lesion detection algorithm based on multi-scale input convolutional neural network model for diabetic retinopathy[J]. Chin J Exp Ophthalmol, 2019, 37(8): 624-629. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.007. | 
				                                                        
				                                                            
				                                                                | 16. | 鄭武, 阮坤煒, 吳天添, 等. 人工智能糖尿病視網膜病變篩查系統與眼科醫師診斷結果的一致性分析[J]. 眼科新進展, 2020, 40(12): 1170-1173. DOI: 10.13389/j.cnki.rao.2020.0260.Zheng W, Ruan KW, Wu TT, et al. Consistency of artificial intelligence screening system with ophthalmologist for diagnosing of diabetic retinopathy[J]. Rec Adv Ophthalmol, 2020, 40(12): 1170-1173. DOI: 10.13389/j.cnki.rao.2020.0260. | 
				                                                        
				                                                            
				                                                                | 17. | 李治璽, 張健, Fong Nellie, 等. 人工智能初篩分流在大規模糖尿病視網膜病變篩查中的應用[J]. 中華醫學雜志, 2020, 100(48): 3835-3840. DOI: 10.3760/cma.j.cn112137-20200901-02526.Li ZX, Zhang J, Nellie F, et al. Using artificial intelligence as an initial triage strategy in diabetic retinopathy screening program in China[J]. Natl Med J China, 2020, 100(48): 3835-3840. DOI: 10.3760/cma.j.cn112137-20200901-02526. |